Title: | Spatial Visualization with ggplot2 |
---|---|
Description: | A collection of functions to visualize spatial data and models on top of static maps from various online sources (e.g Google Maps and Stamen Maps). It includes tools common to those tasks, including functions for geolocation and routing. |
Authors: | David Kahle [aut, cre] , Hadley Wickham [aut] , Scott Jackson [aut], Mikko Korpela [ctb] |
Maintainer: | David Kahle <[email protected]> |
License: | GPL-2 |
Version: | 4.0.0.900 |
Built: | 2025-01-07 05:30:34 UTC |
Source: | https://github.com/dkahle/ggmap |
In ggmap, all maps (class ggmap) have the bb attribute, a data frame bounding box specification in terms of the bottom left and top right points of the spatial extent. This function converts this specification to a named double vector (with names left, bottom, right, top) specification that is used in some querying functions (e.g. get_stadiamap).
bb2bbox(bb)
bb2bbox(bb)
bb |
a bounding box in bb format (see examples) |
a bounding box in bbox format (see examples)
David Kahle [email protected]
## Not run: # cut down on R CMD check time # grab a center/zoom map and compute its bounding box gc <- geocode("white house, washington dc") map <- get_map(gc) (bb <- attr(map, "bb")) (bbox <- bb2bbox(bb)) # use the bounding box to get a Stadia map stadMap <- get_stadiamap(bbox) ggmap(map) + geom_point( aes(x = lon, y = lat), data = gc, colour = "red", size = 3 ) ggmap(stadMap) + geom_point( aes(x = lon, y = lat), data = gc, colour = "red", size = 3 ) ## End(Not run)
## Not run: # cut down on R CMD check time # grab a center/zoom map and compute its bounding box gc <- geocode("white house, washington dc") map <- get_map(gc) (bb <- attr(map, "bb")) (bbox <- bb2bbox(bb)) # use the bounding box to get a Stadia map stadMap <- get_stadiamap(bbox) ggmap(map) + geom_point( aes(x = lon, y = lat), data = gc, colour = "red", size = 3 ) ggmap(stadMap) + geom_point( aes(x = lon, y = lat), data = gc, colour = "red", size = 3 ) ## End(Not run)
calc_zoom can calculate a zoom based on either (1) a data frame with longitude and latitude variables, (2) a longitude range and latitude range, or (3) a bounding box (bbox specification). The specification for (1) is identical to that of most R functions, for (2) simply put in a longitude range into lon and a latitude range into lat, and for (3) put the bounding box in for the lon argument.
calc_zoom(lon, lat, data, adjust = 0, f = 0.05)
calc_zoom(lon, lat, data, adjust = 0, f = 0.05)
lon |
longitude, see details |
lat |
latitude, see details |
data |
(optional) a data frame containing lon and lat as variables |
adjust |
number to add to the calculated zoom |
f |
argument to pass to make_bbox |
# From data calc_zoom(lon, lat, wind) # From range lon_range <- extendrange( wind$lon ) lat_range <- extendrange( wind$lat ) calc_zoom(lon_range, lat_range) # From bounding box box <- make_bbox(lon, lat, data = crime) calc_zoom(box)
# From data calc_zoom(lon, lat, wind) # From range lon_range <- extendrange( wind$lon ) lat_range <- extendrange( wind$lat ) calc_zoom(lon_range, lat_range) # From bounding box box <- make_bbox(lon, lat, data = crime) calc_zoom(box)
Lightly cleaned Houston crime from January 2010 to August 2010 geocoded with Google Maps
Houston Police Department, City of Houston
https://www.houstontx.gov/police/cs/index-2.htm
Geocodes (finds latitude and longitude of) a location using the Google
Geocoding API. Note: To use Google's Geocoding API, you must first enable the
API in the Google Cloud Platform Console. See register_google()
.
geocode( location, output = c("latlon", "latlona", "more", "all"), source = c("google", "dsk"), force = ifelse(source == "dsk", FALSE, TRUE), urlonly = FALSE, override_limit = FALSE, nameType = c("long", "short"), ext = "com", inject = "", ... ) mutate_geocode(data, location, ...) geocodeQueryCheck() geocode_cache() write_geocode_cache(path, ...) load_geocode_cache(path, overwrite = FALSE) clear_geocode_cache(path)
geocode( location, output = c("latlon", "latlona", "more", "all"), source = c("google", "dsk"), force = ifelse(source == "dsk", FALSE, TRUE), urlonly = FALSE, override_limit = FALSE, nameType = c("long", "short"), ext = "com", inject = "", ... ) mutate_geocode(data, location, ...) geocodeQueryCheck() geocode_cache() write_geocode_cache(path, ...) load_geocode_cache(path, overwrite = FALSE) clear_geocode_cache(path)
location |
a character vector of street addresses or place names (e.g.
|
output |
amount of output, |
source |
"google" for Google (note: "dsk" is defunct) |
force |
force online query even if cached. |
urlonly |
return only the url? |
override_limit |
override the current query rate |
nameType |
in some cases, Google returns both a long name and a short name. this parameter allows the user to specify which to grab. |
ext |
top level domain (e.g. "com", "co.nz"); helpful for non-US users |
inject |
character string to add to the url or named character vector of key-value pairs to be injected (e.g. c("a" = "b") get converted to "a=b" and appended to the query) |
... |
In |
data |
a data frame or equivalent |
path |
path to file |
overwrite |
in |
Note: geocode()
uses Google's Geocoding API to geocode addresses. Please
take care not to disclose sensitive information.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8972108/ suggest various
alternative options for such data.
If output
is "latlon"
, "latlona"
, or "more"
, a tibble
(classed data frame). If "all"
, a list.
David Kahle [email protected]
https://developers.google.com/maps/documentation/geocoding/, https://developers.google.com/maps/documentation/javascript/geocoding/, https://developers.google.com/maps/documentation/geocoding/usage-and-billing/, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8972108/
## Not run: requires Google API key, see ?register_google ## basic usage ######################################## # geocoding is most commonly used for addresses geocode("1600 Amphitheatre Parkway, Mountain View, CA") geocode("1600 Amphitheatre Parkway, Mountain View, CA", urlonly = TRUE) # google can also geocode colloquial names of places geocode("the white house") # geocode can also accept character vectors of places geocode(c("the white house", "washington dc")) ## types of output ######################################## geocode("waco texas") geocode("waco texas", output = "latlona") geocode("waco texas", output = "more") str(geocode("waco texas", output = "all")) geocode(c("waco, texas", "houston, texas")) geocode(c("waco, texas", "houston, texas"), output = "latlona") geocode(c("waco, texas", "houston, texas"), output = "all") %>% str(4) ## mutate_geocode ######################################## # mutate_geocode is used to add location columns to an existing dataset # that has location information df <- data.frame( address = c("1600 Pennsylvania Avenue, Washington DC", "", "houston texas"), stringsAsFactors = FALSE ) mutate_geocode(df, address) df %>% mutate_geocode(address) ## known issues ######################################## # in some cases geocode finds several locations ## End(Not run)
## Not run: requires Google API key, see ?register_google ## basic usage ######################################## # geocoding is most commonly used for addresses geocode("1600 Amphitheatre Parkway, Mountain View, CA") geocode("1600 Amphitheatre Parkway, Mountain View, CA", urlonly = TRUE) # google can also geocode colloquial names of places geocode("the white house") # geocode can also accept character vectors of places geocode(c("the white house", "washington dc")) ## types of output ######################################## geocode("waco texas") geocode("waco texas", output = "latlona") geocode("waco texas", output = "more") str(geocode("waco texas", output = "all")) geocode(c("waco, texas", "houston, texas")) geocode(c("waco, texas", "houston, texas"), output = "latlona") geocode(c("waco, texas", "houston, texas"), output = "all") %>% str(4) ## mutate_geocode ######################################## # mutate_geocode is used to add location columns to an existing dataset # that has location information df <- data.frame( address = c("1600 Pennsylvania Avenue, Washington DC", "", "houston texas"), stringsAsFactors = FALSE ) mutate_geocode(df, address) df %>% mutate_geocode(address) ## known issues ######################################## # in some cases geocode finds several locations ## End(Not run)
This is ggplot2's segment with rounded ends. It's mainly included in ggmap for historical reasons.
geom_leg( mapping = NULL, data = NULL, stat = "identity", position = "identity", arrow = NULL, lineend = "round", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... )
geom_leg( mapping = NULL, data = NULL, stat = "identity", position = "identity", arrow = NULL, lineend = "round", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ... )
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
stat |
The statistical transformation to use on the data for this
layer, either as a |
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
arrow |
specification for arrow heads, as created by |
lineend |
Line end style (round, butt, square). |
na.rm |
If |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
... |
Other arguments passed on to |
only intended for use in ggmap package. only designed for mercator projection.
geom_segment()
, route()
, inspired by
http://spatialanalysis.co.uk/2012/02/great-maps-ggplot2/, no longer active
## Not run: # removed for R CMD check speed map <- get_map( location = c(-77.0425, 38.8925), # painfully picked by hand source = "google", zoom = 14, maptype = "satellite" ) ggmap(map) (legs_df <- route( "the white house, dc", "lincoln memorial washington dc", alternatives = TRUE )) ggplot(data = legs_df) + geom_leg(aes( x = start_lon, xend = end_lon, y = start_lat, yend = end_lat )) + coord_map() ggplot(data = legs_df) + geom_leg(aes( x = start_lon, xend = end_lon, y = start_lat, yend = end_lat, color = route )) + coord_map() ggmap(map) + geom_leg( aes( x = start_lon, xend = end_lon, y = start_lat, yend = end_lat ), data = legs_df, color = "red" ) # adding a color aesthetic errors because of a base-layer problem # ggmap(map) + # geom_leg( # aes( # x = start_lon, xend = end_lon, # y = start_lat, yend = end_lat, # color = route # ) # ) # this is probably the easiest hack to fix it ggplot(data = legs_df) + inset_ggmap(map) + geom_leg( aes( x = start_lon, xend = end_lon, y = start_lat, yend = end_lat, color = route ), data = legs_df ) + coord_map() ## End(Not run)
## Not run: # removed for R CMD check speed map <- get_map( location = c(-77.0425, 38.8925), # painfully picked by hand source = "google", zoom = 14, maptype = "satellite" ) ggmap(map) (legs_df <- route( "the white house, dc", "lincoln memorial washington dc", alternatives = TRUE )) ggplot(data = legs_df) + geom_leg(aes( x = start_lon, xend = end_lon, y = start_lat, yend = end_lat )) + coord_map() ggplot(data = legs_df) + geom_leg(aes( x = start_lon, xend = end_lon, y = start_lat, yend = end_lat, color = route )) + coord_map() ggmap(map) + geom_leg( aes( x = start_lon, xend = end_lon, y = start_lat, yend = end_lat ), data = legs_df, color = "red" ) # adding a color aesthetic errors because of a base-layer problem # ggmap(map) + # geom_leg( # aes( # x = start_lon, xend = end_lon, # y = start_lat, yend = end_lat, # color = route # ) # ) # this is probably the easiest hack to fix it ggplot(data = legs_df) + inset_ggmap(map) + geom_leg( aes( x = start_lon, xend = end_lon, y = start_lat, yend = end_lat, color = route ), data = legs_df ) + coord_map() ## End(Not run)
get_cloudmademap()
accesses a tile server for Stamen Maps and
downloads/stitches map tiles/formats a map image. This function requires an
api key which can be obtained for free from http://cloudmade.com/user/show,
now defunct. Thousands of maptypes ("styles"), including create-your-own
options, are available from http://maps.cloudmade.com/editor (defunct).
get_cloudmademap( bbox = c(left = -95.80204, bottom = 29.38048, right = -94.92313, top = 30.14344), zoom = 10, api_key, maptype = 1, highres = TRUE, crop = TRUE, messaging = FALSE, urlonly = FALSE, filename = NULL, color = c("color", "bw"), ... )
get_cloudmademap( bbox = c(left = -95.80204, bottom = 29.38048, right = -94.92313, top = 30.14344), zoom = 10, api_key, maptype = 1, highres = TRUE, crop = TRUE, messaging = FALSE, urlonly = FALSE, filename = NULL, color = c("color", "bw"), ... )
bbox |
a bounding box in the format c(lowerleftlon, lowerleftlat, upperrightlon, upperrightlat). |
zoom |
a zoom level |
api_key |
character string containing cloud made api key, see details |
maptype |
an integer of what cloud made calls style, see details |
highres |
double resolution |
crop |
crop raw map tiles to specified bounding box |
messaging |
turn messaging on/off |
urlonly |
return url only |
filename |
destination file for download (file extension added according
to format). Default |
color |
color or black-and-white |
... |
... |
a ggmap object (a classed raster object with a bounding box attribute)
David Kahle [email protected]
http://maps.cloudmade.com/ (defunct), ggmap()
get_googlemap()
queries the Google Maps Static API version 2 to download
a static map. Note that in most cases by using this function you are
agreeing to the Google Maps API Terms of Service at
https://cloud.google.com/maps-platform/terms/. Note that as of mid-2018,
registering with Google Cloud to obtain an API key is required to use any of
Google's services, including get_googlemap()
. Usage and billing may apply,
see the links under See Also further down in this documentation for more
details.
get_googlemap( center = c(lon = -95.3632715, lat = 29.7632836), zoom = 10, size = c(640, 640), scale = 2, format = c("png8", "gif", "jpg", "jpg-baseline", "png32"), maptype = GOOGLE_VALID_MAP_TYPES, language = "en-EN", messaging = FALSE, urlonly = FALSE, filename = NULL, color = c("color", "bw"), force = FALSE, where = tempdir(), archiving = FALSE, ext = "com", inject = "", region, markers, path, visible, style, ... )
get_googlemap( center = c(lon = -95.3632715, lat = 29.7632836), zoom = 10, size = c(640, 640), scale = 2, format = c("png8", "gif", "jpg", "jpg-baseline", "png32"), maptype = GOOGLE_VALID_MAP_TYPES, language = "en-EN", messaging = FALSE, urlonly = FALSE, filename = NULL, color = c("color", "bw"), force = FALSE, where = tempdir(), archiving = FALSE, ext = "com", inject = "", region, markers, path, visible, style, ... )
center |
the center of the map; either a longitude/latitude numeric
vector or a string containing a location, in which case |
zoom |
map zoom; an integer from 3 (continent) to 21 (building), default value 10 (city) |
size |
rectangular dimensions of map in pixels - horizontal x vertical - with a max of c(640, 640). this parameter is affected in a multiplicative way by scale. |
scale |
multiplicative factor for the number of pixels returned possible values are 1, 2, or 4 (e.g. size = c(640,640) and scale = 2 returns an image with 1280x1280 pixels). 4 is reserved for google business users only. scale also affects the size of labels as well. |
format |
character string providing image format - png, jpeg, and gif formats available in various flavors |
maptype |
character string providing google map theme. options available
are |
language |
character string providing language of map labels (for themes
with them) in the format |
messaging |
turn messaging on/off |
urlonly |
return url only |
filename |
destination file for download (file extension added according
to format). Default |
color |
color or black-and-white |
force |
if the map is on file, should a new map be looked up? |
where |
where should the file drawer be located (without terminating "/") |
archiving |
use archived maps. note: by changing to TRUE you agree to the one of the approved uses listed in the Google Maps API Terms of Service : https://cloud.google.com/maps-platform/terms/. |
ext |
domain extension (e.g. |
inject |
character string to add to the url |
region |
borders to display as a region code specified as a two-character ccTLD ("top-level domain") value, see https://en.wikipedia.org/wiki/List_of_Internet_top-level_domains#Country_code_top-level_domains |
markers |
data.frame with first column longitude, second column latitude, for which google markers should be embedded in the map image, or character string to be passed directly to api |
path |
data.frame (or list of data.frames) with first column longitude, second column latitude, for which a single path should be embedded in the map image, or character string to be passed directly to api |
visible |
a location as a longitude/latitude numeric vector (or data frame with first column longitude, second latitude) or vector of character string addresses which should be visible in map extent |
style |
character string to be supplied directly to the api for the style argument or a named vector (see examples). this is a powerful complex specification, see https://developers.google.com/maps/documentation/maps-static/ |
... |
... |
a ggmap object (a classed raster object with a bounding box attribute)
David Kahle [email protected]
https://developers.google.com/maps/documentation/maps-static/overview/,
https://developers.google.com/maps/documentation/maps-static/start/,
https://developers.google.com/maps/documentation/maps-static/get-api-key/,
https://developers.google.com/maps/documentation/maps-static/usage-and-billing/,
ggmap()
, register_google()
## Not run: requires Google API key, see ?register_google ## basic usage ######################################## (map <- get_googlemap(c(-97.14667, 31.5493))) ggmap(map) # plotting based on a colloquial name # this requires a geocode() call, and needs that API get_googlemap("waco, texas") %>% ggmap() # different maptypes are available get_googlemap("waco, texas", maptype = "satellite") %>% ggmap() get_googlemap("waco, texas", maptype = "hybrid") %>% ggmap() # you can get the url as follows # see ?register_google if you want the key printed get_googlemap(urlonly = TRUE) ## other usage ######################################## # markers and paths are easy to access d <- function(x=-95.36, y=29.76, n,r,a){ round(data.frame( lon = jitter(rep(x,n), amount = a), lat = jitter(rep(y,n), amount = a) ), digits = r) } (df <- d(n = 50, r = 3, a = .3)) map <- get_googlemap(markers = df, path = df, scale = 2) ggmap(map) ggmap(map, extent = "device") + geom_point(aes(x = lon, y = lat), data = df, size = 3, colour = "black") + geom_path(aes(x = lon, y = lat), data = df) gc <- geocode("waco, texas", source = "google") center <- as.numeric(gc) ggmap(get_googlemap(center = center, color = "bw", scale = 2), extent = "device") # the scale argument can be seen in the following # (make your graphics device as large as possible) ggmap(get_googlemap(center, scale = 1), extent = "panel") # pixelated ggmap(get_googlemap(center, scale = 2), extent = "panel") # fine # archiving; note that you must meet google's terms for this condition map <- get_googlemap(archiving = TRUE) map <- get_googlemap() map <- get_googlemap() ggmap(map) # style map <- get_googlemap( maptype = "roadmap", style = c(feature = "all", element = "labels", visibility = "off"), color = "bw" ) ggmap(map) ## End(Not run)
## Not run: requires Google API key, see ?register_google ## basic usage ######################################## (map <- get_googlemap(c(-97.14667, 31.5493))) ggmap(map) # plotting based on a colloquial name # this requires a geocode() call, and needs that API get_googlemap("waco, texas") %>% ggmap() # different maptypes are available get_googlemap("waco, texas", maptype = "satellite") %>% ggmap() get_googlemap("waco, texas", maptype = "hybrid") %>% ggmap() # you can get the url as follows # see ?register_google if you want the key printed get_googlemap(urlonly = TRUE) ## other usage ######################################## # markers and paths are easy to access d <- function(x=-95.36, y=29.76, n,r,a){ round(data.frame( lon = jitter(rep(x,n), amount = a), lat = jitter(rep(y,n), amount = a) ), digits = r) } (df <- d(n = 50, r = 3, a = .3)) map <- get_googlemap(markers = df, path = df, scale = 2) ggmap(map) ggmap(map, extent = "device") + geom_point(aes(x = lon, y = lat), data = df, size = 3, colour = "black") + geom_path(aes(x = lon, y = lat), data = df) gc <- geocode("waco, texas", source = "google") center <- as.numeric(gc) ggmap(get_googlemap(center = center, color = "bw", scale = 2), extent = "device") # the scale argument can be seen in the following # (make your graphics device as large as possible) ggmap(get_googlemap(center, scale = 1), extent = "panel") # pixelated ggmap(get_googlemap(center, scale = 2), extent = "panel") # fine # archiving; note that you must meet google's terms for this condition map <- get_googlemap(archiving = TRUE) map <- get_googlemap() map <- get_googlemap() ggmap(map) # style map <- get_googlemap( maptype = "roadmap", style = c(feature = "all", element = "labels", visibility = "off"), color = "bw" ) ggmap(map) ## End(Not run)
get_map()
is a smart wrapper that queries the Google Maps,
OpenStreetMap, and Stadia Maps servers for a map.
get_map( location = c(lon = -95.3632715, lat = 29.7632836), zoom = "auto", scale = "auto", maptype = c(GOOGLE_VALID_MAP_TYPES, STADIA_VALID_MAP_TYPES), source = c("google", "osm", "stadia"), force = ifelse(source == "google", TRUE, FALSE), messaging = FALSE, urlonly = FALSE, filename = NULL, crop = TRUE, color = c("color", "bw"), language = "en-EN", ... )
get_map( location = c(lon = -95.3632715, lat = 29.7632836), zoom = "auto", scale = "auto", maptype = c(GOOGLE_VALID_MAP_TYPES, STADIA_VALID_MAP_TYPES), source = c("google", "osm", "stadia"), force = ifelse(source == "google", TRUE, FALSE), messaging = FALSE, urlonly = FALSE, filename = NULL, crop = TRUE, color = c("color", "bw"), language = "en-EN", ... )
location |
an address, longitude/latitude pair (in that order), or left/bottom/right/top bounding box |
zoom |
map zoom, an integer from 3 (continent) to 21 (building), default value 10 (city). openstreetmaps limits a zoom of 18, and the limit on Stadia Maps depends on the maptype. "auto" automatically determines the zoom for bounding box specifications, and is defaulted to 10 with center/zoom specifications. maps of the whole world currently not supported. |
scale |
scale argument of |
maptype |
character string providing map theme. options available are "terrain", "terrain-background", "satellite", "roadmap", and "hybrid" (Google Maps), "stamen_terrain", "stamen_toner", "stamen_toner_lite", "stamen_watercolor", "stamen_terrain_background", "stamen_toner_background", "stamen_terrain_lines", "stamen_terrain_labels", "stamen_toner_lines", "stamen_toner_labels" (Stadia Maps) |
source |
Google Maps ("google"), OpenStreetMap ("osm"), Stadia Maps ("stadia") |
force |
force new map (don't use archived version) |
messaging |
turn messaging on/off |
urlonly |
return url only |
filename |
destination file for download (file extension added according
to format). Default |
crop |
(Stadia and cloudmade maps) crop tiles to bounding box |
color |
color ("color") or black-and-white ("bw") |
language |
language for google maps |
... |
... |
a ggmap object (a classed raster object with a bounding box attribute)
David Kahle [email protected]
## Not run: some requires Google API key, see ?register_google ## basic usage ######################################## # lon-lat vectors automatically use google: (map <- get_map(c(-97.14667, 31.5493))) str(map) ggmap(map) # bounding boxes default to Stadia Maps (map <- get_map(c(left = -97.1268, bottom = 31.536245, right = -97.099334, top = 31.559652))) ggmap(map) # characters default to google (map <- get_map("orlando, florida")) ggmap(map) ## basic usage ######################################## (map <- get_map(maptype = "roadmap")) (map <- get_map(source = "osm")) (map <- get_map(source = "stadia", maptype = "stamen_watercolor")) map <- get_map(location = "texas", zoom = 6, source = "stadia") ggmap(map, fullpage = TRUE) ## End(Not run)
## Not run: some requires Google API key, see ?register_google ## basic usage ######################################## # lon-lat vectors automatically use google: (map <- get_map(c(-97.14667, 31.5493))) str(map) ggmap(map) # bounding boxes default to Stadia Maps (map <- get_map(c(left = -97.1268, bottom = 31.536245, right = -97.099334, top = 31.559652))) ggmap(map) # characters default to google (map <- get_map("orlando, florida")) ggmap(map) ## basic usage ######################################## (map <- get_map(maptype = "roadmap")) (map <- get_map(source = "osm")) (map <- get_map(source = "stadia", maptype = "stamen_watercolor")) map <- get_map(location = "texas", zoom = 6, source = "stadia") ggmap(map, fullpage = TRUE) ## End(Not run)
get_openstreetmap()
accesses a tile server for OpenStreetMap and
downloads/formats a map image. This is simply a wrapper for the web-based
version at https://www.openstreetmap.org/. If you don't know how to get
the map you want, go there, navigate to the map extent that you want, click
the export tab at the top of the page, and copy the information into this
function.
get_openstreetmap( bbox = c(left = -95.80204, bottom = 29.38048, right = -94.92313, top = 30.14344), scale = 606250, format = c("png", "jpeg", "svg", "pdf", "ps"), messaging = FALSE, urlonly = FALSE, filename = NULL, color = c("color", "bw"), ... )
get_openstreetmap( bbox = c(left = -95.80204, bottom = 29.38048, right = -94.92313, top = 30.14344), scale = 606250, format = c("png", "jpeg", "svg", "pdf", "ps"), messaging = FALSE, urlonly = FALSE, filename = NULL, color = c("color", "bw"), ... )
bbox |
a bounding box in the format c(lowerleftlon, lowerleftlat, upperrightlon, upperrightlat) |
scale |
scale parameter, see
https://wiki.openstreetmap.org/wiki/MinScaleDenominator. smaller
scales provide a finer degree of detail, where larger scales produce more
coarse detail. The scale argument is a tricky number to correctly specify.
In most cases, if you get an error when downloading an openstreetmap the
error is attributable to an improper scale specification.
|
format |
character string providing image format - png, jpeg, svg, pdf, and ps formats |
messaging |
turn messaging on/off |
urlonly |
return url only |
filename |
destination file for download (file extension added according
to format). Default |
color |
color or black-and-white |
... |
... |
In some cases the OSM server is unavailable, in these cases you will receive
an error message from utils::download.file()
with the message HTTP status
'503 Service Unavailable'. You can confirm this by setting urlonly = TRUE
,
and then entering the URL in a web browser. the solution is either (1)
change sources or (2) wait for the OSM servers to come back up.
See https://www.openstreetmap.org/copyright/ for license and copyright information.
a ggmap object (a classed raster object with a bounding box attribute)
David Kahle [email protected]
https://www.openstreetmap.org/, ggmap()
get_stadiamap()
accesses a tile server for Stadia Maps and
downloads/stitches map tiles/formats a map image.
get_stadiamap( bbox = c(left = -95.80204, bottom = 29.38048, right = -94.92313, top = 30.14344), zoom = 10, maptype = STADIA_VALID_MAP_TYPES, crop = TRUE, messaging = FALSE, urlonly = FALSE, color = c("color", "bw"), force = FALSE, where = tempdir(), ... )
get_stadiamap( bbox = c(left = -95.80204, bottom = 29.38048, right = -94.92313, top = 30.14344), zoom = 10, maptype = STADIA_VALID_MAP_TYPES, crop = TRUE, messaging = FALSE, urlonly = FALSE, color = c("color", "bw"), force = FALSE, where = tempdir(), ... )
bbox |
a bounding box in the format c(lowerleftlon, lowerleftlat, upperrightlon, upperrightlat). |
zoom |
a zoom level |
maptype |
stamen_terrain, stamen_toner, stamen_toner_lite, stamen_watercolor, stamen_terrain_background, stamen_toner_background, stamen_terrain_lines, stamen_terrain_labels, stamen_toner_lines, stamen_toner_labels. |
crop |
crop raw map tiles to specified bounding box. if FALSE, the resulting map will more than cover the bounding box specified. |
messaging |
turn messaging on/off |
urlonly |
return url only |
color |
color or black-and-white (use force = TRUE if you've already downloaded the images) |
force |
if the map is on file, should a new map be looked up? |
where |
where should the file drawer be located (without terminating "/") |
... |
... |
a ggmap object (a classed raster object with a bounding box attribute)
https://docs.stadiamaps.com/themes/, ggmap()
## Not run: requires a Stadia Maps API key. see ?register_stadiamaps ## basic usage ######################################## bbox <- c(left = -97.1268, bottom = 31.536245, right = -97.099334, top = 31.559652) ggmap(get_stadiamap(bbox, zoom = 13)) ggmap(get_stadiamap(bbox, zoom = 14)) ggmap(get_stadiamap(bbox, zoom = 15)) ggmap(get_stadiamap(bbox, zoom = 17, messaging = TRUE)) place <- "mount everest" (google <- get_googlemap(place, zoom = 9)) ggmap(google) bbox_everest <- c(left = 86.05, bottom = 27.21, right = 87.81, top = 28.76) ggmap(get_stadiamap(bbox_everest, zoom = 9)) ## map types ######################################## place <- "rio de janeiro" google <- get_googlemap(place, zoom = 10) ggmap(google) bbox <- bb2bbox(attr(google, "bb")) get_stadiamap(bbox, maptype = "stamen_terrain") %>% ggmap() get_stadiamap(bbox, maptype = "stamen_terrain_background") %>% ggmap() get_stadiamap(bbox, maptype = "stamen_terrain_labels") %>% ggmap() get_stadiamap(bbox, maptype = "stamen_terrain_lines") %>% ggmap() get_stadiamap(bbox, maptype = "stamen_toner") %>% ggmap() get_stadiamap(bbox, maptype = "stamen_toner_background") %>% ggmap() get_stadiamap(bbox, maptype = "stamen_toner_labels") %>% ggmap() get_stadiamap(bbox, maptype = "stamen_toner_lines") %>% ggmap() get_stadiamap(bbox, maptype = "stamen_toner_lite") %>% ggmap() get_stadiamap(bbox, maptype = "stamen_watercolor") %>% ggmap() ## zoom levels ######################################## get_stadiamap(bbox, maptype = "stamen_watercolor", zoom = 11) %>% ggmap(extent = "device") get_stadiamap(bbox, maptype = "stamen_watercolor", zoom = 12) %>% ggmap(extent = "device") get_stadiamap(bbox, maptype = "stamen_watercolor", zoom = 13) %>% ggmap(extent = "device") # get_stadiamap(bbox, maptype = "stamen_watercolor", zoom = 14) %>% ggmap(extent = "device") # get_stadiamap(bbox, maptype = "stamen_watercolor", zoom = 15) %>% ggmap(extent = "device") # get_stadiamap(bbox, maptype = "stamen_watercolor", zoom = 16) %>% ggmap(extent = "device") # get_stadiamap(bbox, maptype = "stamen_watercolor", zoom = 17) %>% ggmap(extent = "device") # get_stadiamap(bbox, maptype = "stamen_watercolor", zoom = 18) %>% ggmap(extent = "device") ## more examples ######################################## gc <- geocode("rio de janeiro") get_stadiamap(bbox, zoom = 10) %>% ggmap() + geom_point(aes(x = lon, y = lat), data = gc, colour = "red", size = 2) get_stadiamap(bbox, zoom = 10, crop = FALSE) %>% ggmap() + geom_point(aes(x = lon, y = lat), data = gc, colour = "red", size = 2) get_stadiamap(bbox, zoom = 10, maptype = "stamen_watercolor") %>% ggmap() + geom_point(aes(x = lon, y = lat), data = gc, colour = "red", size = 2) get_stadiamap(bbox, zoom = 10, maptype = "stamen_toner") %>% ggmap() + geom_point(aes(x = lon, y = lat), data = gc, colour = "red", size = 2) # continental united states labels c("left" = -125, "bottom" = 25.75, "right" = -67, "top" = 49) %>% get_stadiamap(zoom = 5, maptype = "stamen_toner_labels") %>% ggmap() # accuracy check - white house gc <- geocode("the white house") qmap("the white house", zoom = 16) + geom_point(aes(x = lon, y = lat), data = gc, colour = "red", size = 3) qmap("the white house", zoom = 16, source = "stadia", maptype = "stamen_terrain") + geom_point(aes(x = lon, y = lat), data = gc, colour = "red", size = 3) ## known issues ######################################## # Stamen's original tilesets were raster renders built up over time, but have not been # actively rendered for several years. As a consequence, some tiles simply do not exist, # particularly at high zoom levels. # # The newer styles have been redesigned and are now generated live by Stadia Maps, so # these are complete, but at the time of this writing, the Watercolor style is still incomplete. ## End(Not run)
## Not run: requires a Stadia Maps API key. see ?register_stadiamaps ## basic usage ######################################## bbox <- c(left = -97.1268, bottom = 31.536245, right = -97.099334, top = 31.559652) ggmap(get_stadiamap(bbox, zoom = 13)) ggmap(get_stadiamap(bbox, zoom = 14)) ggmap(get_stadiamap(bbox, zoom = 15)) ggmap(get_stadiamap(bbox, zoom = 17, messaging = TRUE)) place <- "mount everest" (google <- get_googlemap(place, zoom = 9)) ggmap(google) bbox_everest <- c(left = 86.05, bottom = 27.21, right = 87.81, top = 28.76) ggmap(get_stadiamap(bbox_everest, zoom = 9)) ## map types ######################################## place <- "rio de janeiro" google <- get_googlemap(place, zoom = 10) ggmap(google) bbox <- bb2bbox(attr(google, "bb")) get_stadiamap(bbox, maptype = "stamen_terrain") %>% ggmap() get_stadiamap(bbox, maptype = "stamen_terrain_background") %>% ggmap() get_stadiamap(bbox, maptype = "stamen_terrain_labels") %>% ggmap() get_stadiamap(bbox, maptype = "stamen_terrain_lines") %>% ggmap() get_stadiamap(bbox, maptype = "stamen_toner") %>% ggmap() get_stadiamap(bbox, maptype = "stamen_toner_background") %>% ggmap() get_stadiamap(bbox, maptype = "stamen_toner_labels") %>% ggmap() get_stadiamap(bbox, maptype = "stamen_toner_lines") %>% ggmap() get_stadiamap(bbox, maptype = "stamen_toner_lite") %>% ggmap() get_stadiamap(bbox, maptype = "stamen_watercolor") %>% ggmap() ## zoom levels ######################################## get_stadiamap(bbox, maptype = "stamen_watercolor", zoom = 11) %>% ggmap(extent = "device") get_stadiamap(bbox, maptype = "stamen_watercolor", zoom = 12) %>% ggmap(extent = "device") get_stadiamap(bbox, maptype = "stamen_watercolor", zoom = 13) %>% ggmap(extent = "device") # get_stadiamap(bbox, maptype = "stamen_watercolor", zoom = 14) %>% ggmap(extent = "device") # get_stadiamap(bbox, maptype = "stamen_watercolor", zoom = 15) %>% ggmap(extent = "device") # get_stadiamap(bbox, maptype = "stamen_watercolor", zoom = 16) %>% ggmap(extent = "device") # get_stadiamap(bbox, maptype = "stamen_watercolor", zoom = 17) %>% ggmap(extent = "device") # get_stadiamap(bbox, maptype = "stamen_watercolor", zoom = 18) %>% ggmap(extent = "device") ## more examples ######################################## gc <- geocode("rio de janeiro") get_stadiamap(bbox, zoom = 10) %>% ggmap() + geom_point(aes(x = lon, y = lat), data = gc, colour = "red", size = 2) get_stadiamap(bbox, zoom = 10, crop = FALSE) %>% ggmap() + geom_point(aes(x = lon, y = lat), data = gc, colour = "red", size = 2) get_stadiamap(bbox, zoom = 10, maptype = "stamen_watercolor") %>% ggmap() + geom_point(aes(x = lon, y = lat), data = gc, colour = "red", size = 2) get_stadiamap(bbox, zoom = 10, maptype = "stamen_toner") %>% ggmap() + geom_point(aes(x = lon, y = lat), data = gc, colour = "red", size = 2) # continental united states labels c("left" = -125, "bottom" = 25.75, "right" = -67, "top" = 49) %>% get_stadiamap(zoom = 5, maptype = "stamen_toner_labels") %>% ggmap() # accuracy check - white house gc <- geocode("the white house") qmap("the white house", zoom = 16) + geom_point(aes(x = lon, y = lat), data = gc, colour = "red", size = 3) qmap("the white house", zoom = 16, source = "stadia", maptype = "stamen_terrain") + geom_point(aes(x = lon, y = lat), data = gc, colour = "red", size = 3) ## known issues ######################################## # Stamen's original tilesets were raster renders built up over time, but have not been # actively rendered for several years. As a consequence, some tiles simply do not exist, # particularly at high zoom levels. # # The newer styles have been redesigned and are now generated live by Stadia Maps, so # these are complete, but at the time of this writing, the Watercolor style is still incomplete. ## End(Not run)
get_stamenmap()
accesses a tile server for Stamen Maps and
downloads/stitches map tiles/formats a map image. Note that Stamen maps don't
cover the entire world.
get_stamenmap( bbox = c(left = -95.80204, bottom = 29.38048, right = -94.92313, top = 30.14344), zoom = 10, maptype = c("terrain", "terrain-background", "terrain-labels", "terrain-lines", "toner", "toner-2010", "toner-2011", "toner-background", "toner-hybrid", "toner-labels", "toner-lines", "toner-lite", "watercolor"), crop = TRUE, messaging = FALSE, urlonly = FALSE, color = c("color", "bw"), force = FALSE, where = tempdir(), https = FALSE, ... ) get_stamen_tile_download_fail_log() retry_stamen_map_download()
get_stamenmap( bbox = c(left = -95.80204, bottom = 29.38048, right = -94.92313, top = 30.14344), zoom = 10, maptype = c("terrain", "terrain-background", "terrain-labels", "terrain-lines", "toner", "toner-2010", "toner-2011", "toner-background", "toner-hybrid", "toner-labels", "toner-lines", "toner-lite", "watercolor"), crop = TRUE, messaging = FALSE, urlonly = FALSE, color = c("color", "bw"), force = FALSE, where = tempdir(), https = FALSE, ... ) get_stamen_tile_download_fail_log() retry_stamen_map_download()
bbox |
a bounding box in the format c(lowerleftlon, lowerleftlat, upperrightlon, upperrightlat). |
zoom |
a zoom level |
maptype |
terrain, terrain-background, terrain-labels, terrain-lines, toner, toner-2010, toner-2011, toner-background, toner-hybrid, toner-labels, toner-lines, toner-lite, or watercolor. |
crop |
crop raw map tiles to specified bounding box. if FALSE, the resulting map will more than cover the bounding box specified. |
messaging |
turn messaging on/off |
urlonly |
return url only |
color |
color or black-and-white (use force = TRUE if you've already downloaded the images) |
force |
if the map is on file, should a new map be looked up? |
where |
where should the file drawer be located (without terminating "/") |
https |
if TRUE, queries an https endpoint so that web traffic between you and the tile server is ecrypted using SSL. |
... |
... |
a ggmap object (a classed raster object with a bounding box attribute)
ggimage is the near ggplot2 equivalent of image.
ggimage(mat, fullpage = TRUE, coord_equal = TRUE, scale_axes = FALSE)
ggimage(mat, fullpage = TRUE, coord_equal = TRUE, scale_axes = FALSE)
mat |
a matrix, imagematrix, array, or raster (something that can be coerced by as.raster) |
fullpage |
should the image take up the entire viewport? |
coord_equal |
should the axes units be equal? |
scale_axes |
should the axes be (0,ncol(mat)-1)x(0,nrow(mat)-1) (F) or (0,1)x(0,1) (T) |
a ggplot object
David Kahle [email protected]
img <- matrix(1:16, 4, 4) image(img) ggimage(t(img[,4:1]), fullpage = FALSE, scale_axes = TRUE) ggimage(t(img[,4:1]), fullpage = FALSE) ## Not run: # not run due to slow performance data(hadley) ggimage(hadley) ggimage(hadley, coord_equal = FALSE) x <- seq(1, 438, 15); n <- length(x) df <- data.frame(x = x, y = -(120*(scale((x - 219)^3 - 25000*x) + rnorm(n)/2 - 3))) qplot(x, y, data = df, geom = c('smooth','point')) ggimage(hadley, fullpage = FALSE) + geom_smooth( aes(x = x, y = y), data = df, color = 'green', size = 1 ) + geom_point( aes(x = x, y = y), data = df, color = 'green', size = 3 ) ## End(Not run)
img <- matrix(1:16, 4, 4) image(img) ggimage(t(img[,4:1]), fullpage = FALSE, scale_axes = TRUE) ggimage(t(img[,4:1]), fullpage = FALSE) ## Not run: # not run due to slow performance data(hadley) ggimage(hadley) ggimage(hadley, coord_equal = FALSE) x <- seq(1, 438, 15); n <- length(x) df <- data.frame(x = x, y = -(120*(scale((x - 219)^3 - 25000*x) + rnorm(n)/2 - 3))) qplot(x, y, data = df, geom = c('smooth','point')) ggimage(hadley, fullpage = FALSE) + geom_smooth( aes(x = x, y = y), data = df, color = 'green', size = 1 ) + geom_point( aes(x = x, y = y), data = df, color = 'green', size = 3 ) ## End(Not run)
Locator for ggplot objects (Note : only accurate when extent = "normal" when using ggmap.)
gglocator(n = 1, message = FALSE, mercator = TRUE, ...)
gglocator(n = 1, message = FALSE, mercator = TRUE, ...)
n |
number of points to locate. |
message |
unused |
mercator |
logical flag; should the plot be treated as using the projection common to most web map services? Set to FALSE if the axes on the plot use a linear scale. |
... |
additional arguments (including deprecated, e.g. xexpand) |
a data frame with columns according to the x and y aesthetics
Tyler Rinker, Baptiste Auguie, DWin, David Kahle, \@Nikolai-Hlubek and \@mvkorpel.
if (interactive()) { # only run for interactive sessions df <- expand.grid(x = 0:-5, y = 0:-5) ggplot(df, aes(x, y)) + geom_point() + annotate(geom = "point", x = -2, y = -2, colour = "red") (pt <- gglocator(mercator = FALSE)) # click red point last_plot() + annotate("point", pt$x, pt$y, color = "blue", size = 3, alpha = .5) hdf <- get_map("houston, texas") ggmap(hdf, extent = "normal") (pt <- gglocator(mercator = TRUE)) last_plot() + annotate("point", pt$lon, pt$lat, color = "blue", size = 3, alpha = .5) }
if (interactive()) { # only run for interactive sessions df <- expand.grid(x = 0:-5, y = 0:-5) ggplot(df, aes(x, y)) + geom_point() + annotate(geom = "point", x = -2, y = -2, colour = "red") (pt <- gglocator(mercator = FALSE)) # click red point last_plot() + annotate("point", pt$x, pt$y, color = "blue", size = 3, alpha = .5) hdf <- get_map("houston, texas") ggmap(hdf, extent = "normal") (pt <- gglocator(mercator = TRUE)) last_plot() + annotate("point", pt$lon, pt$lat, color = "blue", size = 3, alpha = .5) }
ggmap plots the raster object produced by get_map()
.
ggmap( ggmap, extent = "panel", base_layer, maprange = FALSE, legend = "right", padding = 0.02, darken = c(0, "black"), b, fullpage, expand, ... )
ggmap( ggmap, extent = "panel", base_layer, maprange = FALSE, legend = "right", padding = 0.02, darken = c(0, "black"), b, fullpage, expand, ... )
ggmap |
an object of class ggmap (from function get_map) |
extent |
how much of the plot should the map take up? "normal", "device", or "panel" (default) |
base_layer |
a ggplot(aes(...), ...) call; see examples |
maprange |
logical for use with base_layer; should the map define the x and y limits? |
legend |
"left", "right" (default), "bottom", "top", "bottomleft", "bottomright", "topleft", "topright", "none" (used with extent = "device") |
padding |
distance from legend to corner of the plot (used with legend, formerly b) |
darken |
vector of the form c(number, color), where number is in (0,1) and color is a character string indicating the color of the darken. 0 indicates no darkening, 1 indicates a black-out. |
b |
Deprecated, renamed to |
fullpage |
Deprecated, equivalent to |
expand |
Deprecated, equivalent to |
... |
... |
a ggplot object
David Kahle [email protected]
## Not run: ## map queries drag R CMD check ## extents and legends ################################################## hdf <- get_map("houston, texas") ggmap(hdf, extent = "normal") ggmap(hdf) # extent = "panel", note qmap defaults to extent = "device" ggmap(hdf, extent = "device") # make some fake spatial data mu <- c(-95.3632715, 29.7632836); nDataSets <- sample(4:10,1) chkpts <- NULL for(k in 1:nDataSets){ a <- rnorm(2); b <- rnorm(2); si <- 1/3000 * (outer(a,a) + outer(b,b)) chkpts <- rbind( chkpts, cbind(MASS::mvrnorm(rpois(1,50), jitter(mu, .01), si), k) ) } chkpts <- data.frame(chkpts) names(chkpts) <- c("lon", "lat","class") chkpts$class <- factor(chkpts$class) qplot(lon, lat, data = chkpts, colour = class) # show it on the map ggmap(hdf, extent = "normal") + geom_point(aes(x = lon, y = lat, colour = class), data = chkpts, alpha = .5) ggmap(hdf) + geom_point(aes(x = lon, y = lat, colour = class), data = chkpts, alpha = .5) ggmap(hdf, extent = "device") + geom_point(aes(x = lon, y = lat, colour = class), data = chkpts, alpha = .5) theme_set(theme_bw()) ggmap(hdf, extent = "device") + geom_point(aes(x = lon, y = lat, colour = class), data = chkpts, alpha = .5) ggmap(hdf, extent = "device", legend = "topleft") + geom_point(aes(x = lon, y = lat, colour = class), data = chkpts, alpha = .5) # qmplot is great for this kind of thing... qmplot(lon, lat, data = chkpts, color = class, darken = .6) qmplot(lon, lat, data = chkpts, geom = "density2d", color = class, darken = .6) ## maprange ################################################## hdf <- get_map() mu <- c(-95.3632715, 29.7632836) points <- data.frame(MASS::mvrnorm(1000, mu = mu, diag(c(.1, .1)))) names(points) <- c("lon", "lat") points$class <- sample(c("a","b"), 1000, replace = TRUE) ggmap(hdf) + geom_point(data = points) # maprange built into extent = panel, device ggmap(hdf) + geom_point(aes(colour = class), data = points) ggmap(hdf, extent = "normal") + geom_point(data = points) # note that the following is not the same as extent = panel ggmap(hdf, extent = "normal", maprange = TRUE) + geom_point(data = points) # and if you need your data to run off on a extent = device (legend included) ggmap(hdf, extent = "normal", maprange = TRUE) + geom_point(aes(colour = class), data = points) + theme_nothing(legend = TRUE) + theme(legend.position = "right") # again, qmplot is probably more useful qmplot(lon, lat, data = points, color = class, darken = .4, alpha = I(.6)) qmplot(lon, lat, data = points, color = class, maptype = "stamen_toner_lite") ## cool examples ################################################## # contour overlay ggmap(get_map(maptype = "satellite"), extent = "device") + stat_density2d(aes(x = lon, y = lat, colour = class), data = chkpts, bins = 5) # adding additional content library(grid) baylor <- get_map("one bear place, waco, texas", zoom = 15, maptype = "satellite") ggmap(baylor) # use gglocator to find lon/lat"s of interest (clicks <- gglocator(2) ) ggmap(baylor) + geom_point(aes(x = lon, y = lat), data = clicks, colour = "red", alpha = .5) expand.grid(lon = clicks$lon, lat = clicks$lat) ggmap(baylor) + theme_bw() + annotate("segment", x=-97.110, xend=-97.1188, y=31.5450, yend=31.5485, colour=I("red"), arrow = arrow(length=unit(0.3,"cm")), size = 1.5) + annotate("label", x=-97.113, y=31.5445, label = "Department of Statistical Science", colour = I("red"), size = 3.5) + labs(x = "Longitude", y = "Latitude") + ggtitle("Baylor University") baylor <- get_map("marrs mclean science, waco, texas", zoom = 16, maptype = "satellite") ggmap(baylor, extent = "panel") + annotate("segment", x=-97.1175, xend=-97.1188, y=31.5449, yend=31.5485, colour=I("red"), arrow = arrow(length=unit(0.4,"cm")), size = 1.5) + annotate("label", x=-97.1175, y=31.5447, label = "Department of Statistical Science", colour = I("red"), size = 4) # a shapefile like layer data(zips) ggmap(get_map(maptype = "satellite", zoom = 8), extent = "device") + geom_polygon(aes(x = lon, y = lat, group = plotOrder), data = zips, colour = NA, fill = "red", alpha = .2) + geom_path(aes(x = lon, y = lat, group = plotOrder), data = zips, colour = "white", alpha = .4, size = .4) library(plyr) zipsLabels <- ddply(zips, .(zip), function(df){ df[1,c("area", "perimeter", "zip", "lonCent", "latCent")] }) ggmap(get_map(maptype = "satellite", zoom = 9), extent = "device", legend = "none", darken = .5) + geom_text(aes(x = lonCent, y = latCent, label = zip, size = area), data = zipsLabels, colour = I("red")) + scale_size(range = c(1.5,6)) qmplot(lonCent, latCent, data = zipsLabels, geom = "text", label = zip, size = area, maptype = "stamen_toner_lite", color = I("red") ) ## crime data example ################################################## # only violent crimes violent_crimes <- subset(crime, offense != "auto theft" & offense != "theft" & offense != "burglary" ) # rank violent crimes violent_crimes$offense <- factor(violent_crimes$offense, levels = c("robbery", "aggravated assault", "rape", "murder") ) # restrict to downtown violent_crimes <- subset(violent_crimes, -95.39681 <= lon & lon <= -95.34188 & 29.73631 <= lat & lat <= 29.78400 ) # get map and bounding box theme_set(theme_bw(16)) HoustonMap <- qmap("houston", zoom = 14, color = "bw", extent = "device", legend = "topleft") HoustonMap <- ggmap( get_map("houston", zoom = 14, color = "bw"), extent = "device", legend = "topleft" ) # the bubble chart HoustonMap + geom_point(aes(x = lon, y = lat, colour = offense, size = offense), data = violent_crimes) + scale_colour_discrete("Offense", labels = c("Robbery","Aggravated Assault","Rape","Murder")) + scale_size_discrete("Offense", labels = c("Robbery","Aggravated Assault","Rape","Murder"), range = c(1.75,6)) + guides(size = guide_legend(override.aes = list(size = 6))) + theme( legend.key.size = grid::unit(1.8,"lines"), legend.title = element_text(size = 16, face = "bold"), legend.text = element_text(size = 14) ) + labs(colour = "Offense", size = "Offense") # doing it with qmplot is even easier qmplot(lon, lat, data = violent_crimes, maptype = "stamen_toner_lite", color = offense, size = offense, legend = "topleft" ) # or, with styling: qmplot(lon, lat, data = violent_crimes, maptype = "stamen_toner_lite", color = offense, size = offense, legend = "topleft" ) + scale_colour_discrete("Offense", labels = c("Robbery","Aggravated Assault","Rape","Murder")) + scale_size_discrete("Offense", labels = c("Robbery","Aggravated Assault","Rape","Murder"), range = c(1.75,6)) + guides(size = guide_legend(override.aes = list(size = 6))) + theme( legend.key.size = grid::unit(1.8,"lines"), legend.title = element_text(size = 16, face = "bold"), legend.text = element_text(size = 14) ) + labs(colour = "Offense", size = "Offense") # a contour plot HoustonMap + stat_density2d(aes(x = lon, y = lat, colour = offense), size = 3, bins = 2, alpha = 3/4, data = violent_crimes) + scale_colour_discrete("Offense", labels = c("Robbery","Aggravated Assault","Rape","Murder")) + theme( legend.text = element_text(size = 15, vjust = .5), legend.title = element_text(size = 15,face="bold"), legend.key.size = grid::unit(1.8,"lines") ) # 2d histogram... HoustonMap + stat_bin_2d(aes(x = lon, y = lat, colour = offense, fill = offense), size = .5, bins = 30, alpha = 2/4, data = violent_crimes) + scale_colour_discrete("Offense", labels = c("Robbery","Aggravated Assault","Rape","Murder"), guide = FALSE) + scale_fill_discrete("Offense", labels = c("Robbery","Aggravated Assault","Rape","Murder")) + theme( legend.text = element_text(size = 15, vjust = .5), legend.title = element_text(size = 15,face="bold"), legend.key.size = grid::unit(1.8,"lines") ) # changing gears (get a color map) houston <- get_map("houston", zoom = 14) HoustonMap <- ggmap(houston, extent = "device", legend = "topleft") # a filled contour plot... HoustonMap + stat_density2d(aes(x = lon, y = lat, fill = ..level.., alpha = ..level..), size = 2, bins = 4, data = violent_crimes, geom = "polygon") + scale_fill_gradient("Violent\nCrime\nDensity") + scale_alpha(range = c(.4, .75), guide = FALSE) + guides(fill = guide_colorbar(barwidth = 1.5, barheight = 10)) # ... with an insert overlay <- stat_density2d(aes(x = lon, y = lat, fill = ..level.., alpha = ..level..), bins = 4, geom = "polygon", data = violent_crimes) attr(houston,"bb") # to help finding (x/y)(min/max) vals below HoustonMap + stat_density2d(aes(x = lon, y = lat, fill = ..level.., alpha = ..level..), bins = 4, geom = "polygon", data = violent_crimes) + scale_fill_gradient("Violent\nCrime\nDensity") + scale_alpha(range = c(.4, .75), guide = FALSE) + guides(fill = guide_colorbar(barwidth = 1.5, barheight = 10)) + inset( grob = ggplotGrob(ggplot() + overlay + scale_fill_gradient("Violent\nCrime\nDensity") + scale_alpha(range = c(.4, .75), guide = FALSE) + theme_inset() ), xmin = -95.35877, xmax = -95.34229, ymin = 29.73754, ymax = 29.75185 ) ## more examples ################################################## # you can layer anything on top of the maps (even meaningless stuff) df <- data.frame( lon = rep(seq(-95.39, -95.35, length.out = 8), each = 20), lat = sapply( rep(seq(29.74, 29.78, length.out = 8), each = 20), function(x) rnorm(1, x, .002) ), class = rep(letters[1:8], each = 20) ) qplot(lon, lat, data = df, geom = "boxplot", fill = class) HoustonMap + geom_boxplot(aes(x = lon, y = lat, fill = class), data = df) ## the base_layer argument - faceting ################################################## df <- data.frame( x = rnorm(1000, -95.36258, .2), y = rnorm(1000, 29.76196, .2) ) # no apparent change because ggmap sets maprange = TRUE with extent = "panel" ggmap(get_map(), base_layer = ggplot(aes(x = x, y = y), data = df)) + geom_point(colour = "red") # ... but there is a difference ggmap(get_map(), base_layer = ggplot(aes(x = x, y = y), data = df), extent = "normal") + geom_point(colour = "red") # maprange can fix it (so can extent = "panel") ggmap(get_map(), maprange = TRUE, extent = "normal", base_layer = ggplot(aes(x = x, y = y), data = df)) + geom_point(colour = "red") # base_layer makes faceting possible df <- data.frame( x = rnorm(10*100, -95.36258, .075), y = rnorm(10*100, 29.76196, .075), year = rep(paste("year",format(1:10)), each = 100) ) ggmap(get_map(), base_layer = ggplot(aes(x = x, y = y), data = df)) + geom_point() + facet_wrap(~ year) ggmap(get_map(), base_layer = ggplot(aes(x = x, y = y), data = df), extent = "device") + geom_point() + facet_wrap(~ year) qmplot(x, y, data = df) qmplot(x, y, data = df, facets = ~ year) ## neat faceting examples ################################################## # simulated example df <- data.frame( x = rnorm(10*100, -95.36258, .05), y = rnorm(10*100, 29.76196, .05), year = rep(paste("year",format(1:10)), each = 100) ) for(k in 0:9){ df$x[1:100 + 100*k] <- df$x[1:100 + 100*k] + sqrt(.05)*cos(2*pi*k/10) df$y[1:100 + 100*k] <- df$y[1:100 + 100*k] + sqrt(.05)*sin(2*pi*k/10) } ggmap(get_map(), base_layer = ggplot(aes(x = x, y = y), data = df)) + stat_density2d(aes(fill = ..level.., alpha = ..level..), bins = 4, geom = "polygon") + scale_fill_gradient2(low = "white", mid = "orange", high = "red", midpoint = 10) + scale_alpha(range = c(.2, .75), guide = FALSE) + facet_wrap(~ year) # crime example by month levels(violent_crimes$month) <- paste( toupper(substr(levels(violent_crimes$month),1,1)), substr(levels(violent_crimes$month),2,20), sep = "" ) houston <- get_map(location = "houston", zoom = 14, source = "osm", color = "bw") HoustonMap <- ggmap(houston, base_layer = ggplot(aes(x = lon, y = lat), data = violent_crimes) ) HoustonMap + stat_density2d(aes(x = lon, y = lat, fill = ..level.., alpha = ..level..), bins = I(5), geom = "polygon", data = violent_crimes) + scale_fill_gradient2("Violent\nCrime\nDensity", low = "white", mid = "orange", high = "red", midpoint = 500) + labs(x = "Longitude", y = "Latitude") + facet_wrap(~ month) + scale_alpha(range = c(.2, .55), guide = FALSE) + ggtitle("Violent Crime Contour Map of Downtown Houston by Month") + guides(fill = guide_colorbar(barwidth = 1.5, barheight = 10)) ## darken argument ################################################## ggmap(get_map()) ggmap(get_map(), darken = .5) ggmap(get_map(), darken = c(.5,"white")) ggmap(get_map(), darken = c(.5,"red")) # silly, but possible ## End(Not run)
## Not run: ## map queries drag R CMD check ## extents and legends ################################################## hdf <- get_map("houston, texas") ggmap(hdf, extent = "normal") ggmap(hdf) # extent = "panel", note qmap defaults to extent = "device" ggmap(hdf, extent = "device") # make some fake spatial data mu <- c(-95.3632715, 29.7632836); nDataSets <- sample(4:10,1) chkpts <- NULL for(k in 1:nDataSets){ a <- rnorm(2); b <- rnorm(2); si <- 1/3000 * (outer(a,a) + outer(b,b)) chkpts <- rbind( chkpts, cbind(MASS::mvrnorm(rpois(1,50), jitter(mu, .01), si), k) ) } chkpts <- data.frame(chkpts) names(chkpts) <- c("lon", "lat","class") chkpts$class <- factor(chkpts$class) qplot(lon, lat, data = chkpts, colour = class) # show it on the map ggmap(hdf, extent = "normal") + geom_point(aes(x = lon, y = lat, colour = class), data = chkpts, alpha = .5) ggmap(hdf) + geom_point(aes(x = lon, y = lat, colour = class), data = chkpts, alpha = .5) ggmap(hdf, extent = "device") + geom_point(aes(x = lon, y = lat, colour = class), data = chkpts, alpha = .5) theme_set(theme_bw()) ggmap(hdf, extent = "device") + geom_point(aes(x = lon, y = lat, colour = class), data = chkpts, alpha = .5) ggmap(hdf, extent = "device", legend = "topleft") + geom_point(aes(x = lon, y = lat, colour = class), data = chkpts, alpha = .5) # qmplot is great for this kind of thing... qmplot(lon, lat, data = chkpts, color = class, darken = .6) qmplot(lon, lat, data = chkpts, geom = "density2d", color = class, darken = .6) ## maprange ################################################## hdf <- get_map() mu <- c(-95.3632715, 29.7632836) points <- data.frame(MASS::mvrnorm(1000, mu = mu, diag(c(.1, .1)))) names(points) <- c("lon", "lat") points$class <- sample(c("a","b"), 1000, replace = TRUE) ggmap(hdf) + geom_point(data = points) # maprange built into extent = panel, device ggmap(hdf) + geom_point(aes(colour = class), data = points) ggmap(hdf, extent = "normal") + geom_point(data = points) # note that the following is not the same as extent = panel ggmap(hdf, extent = "normal", maprange = TRUE) + geom_point(data = points) # and if you need your data to run off on a extent = device (legend included) ggmap(hdf, extent = "normal", maprange = TRUE) + geom_point(aes(colour = class), data = points) + theme_nothing(legend = TRUE) + theme(legend.position = "right") # again, qmplot is probably more useful qmplot(lon, lat, data = points, color = class, darken = .4, alpha = I(.6)) qmplot(lon, lat, data = points, color = class, maptype = "stamen_toner_lite") ## cool examples ################################################## # contour overlay ggmap(get_map(maptype = "satellite"), extent = "device") + stat_density2d(aes(x = lon, y = lat, colour = class), data = chkpts, bins = 5) # adding additional content library(grid) baylor <- get_map("one bear place, waco, texas", zoom = 15, maptype = "satellite") ggmap(baylor) # use gglocator to find lon/lat"s of interest (clicks <- gglocator(2) ) ggmap(baylor) + geom_point(aes(x = lon, y = lat), data = clicks, colour = "red", alpha = .5) expand.grid(lon = clicks$lon, lat = clicks$lat) ggmap(baylor) + theme_bw() + annotate("segment", x=-97.110, xend=-97.1188, y=31.5450, yend=31.5485, colour=I("red"), arrow = arrow(length=unit(0.3,"cm")), size = 1.5) + annotate("label", x=-97.113, y=31.5445, label = "Department of Statistical Science", colour = I("red"), size = 3.5) + labs(x = "Longitude", y = "Latitude") + ggtitle("Baylor University") baylor <- get_map("marrs mclean science, waco, texas", zoom = 16, maptype = "satellite") ggmap(baylor, extent = "panel") + annotate("segment", x=-97.1175, xend=-97.1188, y=31.5449, yend=31.5485, colour=I("red"), arrow = arrow(length=unit(0.4,"cm")), size = 1.5) + annotate("label", x=-97.1175, y=31.5447, label = "Department of Statistical Science", colour = I("red"), size = 4) # a shapefile like layer data(zips) ggmap(get_map(maptype = "satellite", zoom = 8), extent = "device") + geom_polygon(aes(x = lon, y = lat, group = plotOrder), data = zips, colour = NA, fill = "red", alpha = .2) + geom_path(aes(x = lon, y = lat, group = plotOrder), data = zips, colour = "white", alpha = .4, size = .4) library(plyr) zipsLabels <- ddply(zips, .(zip), function(df){ df[1,c("area", "perimeter", "zip", "lonCent", "latCent")] }) ggmap(get_map(maptype = "satellite", zoom = 9), extent = "device", legend = "none", darken = .5) + geom_text(aes(x = lonCent, y = latCent, label = zip, size = area), data = zipsLabels, colour = I("red")) + scale_size(range = c(1.5,6)) qmplot(lonCent, latCent, data = zipsLabels, geom = "text", label = zip, size = area, maptype = "stamen_toner_lite", color = I("red") ) ## crime data example ################################################## # only violent crimes violent_crimes <- subset(crime, offense != "auto theft" & offense != "theft" & offense != "burglary" ) # rank violent crimes violent_crimes$offense <- factor(violent_crimes$offense, levels = c("robbery", "aggravated assault", "rape", "murder") ) # restrict to downtown violent_crimes <- subset(violent_crimes, -95.39681 <= lon & lon <= -95.34188 & 29.73631 <= lat & lat <= 29.78400 ) # get map and bounding box theme_set(theme_bw(16)) HoustonMap <- qmap("houston", zoom = 14, color = "bw", extent = "device", legend = "topleft") HoustonMap <- ggmap( get_map("houston", zoom = 14, color = "bw"), extent = "device", legend = "topleft" ) # the bubble chart HoustonMap + geom_point(aes(x = lon, y = lat, colour = offense, size = offense), data = violent_crimes) + scale_colour_discrete("Offense", labels = c("Robbery","Aggravated Assault","Rape","Murder")) + scale_size_discrete("Offense", labels = c("Robbery","Aggravated Assault","Rape","Murder"), range = c(1.75,6)) + guides(size = guide_legend(override.aes = list(size = 6))) + theme( legend.key.size = grid::unit(1.8,"lines"), legend.title = element_text(size = 16, face = "bold"), legend.text = element_text(size = 14) ) + labs(colour = "Offense", size = "Offense") # doing it with qmplot is even easier qmplot(lon, lat, data = violent_crimes, maptype = "stamen_toner_lite", color = offense, size = offense, legend = "topleft" ) # or, with styling: qmplot(lon, lat, data = violent_crimes, maptype = "stamen_toner_lite", color = offense, size = offense, legend = "topleft" ) + scale_colour_discrete("Offense", labels = c("Robbery","Aggravated Assault","Rape","Murder")) + scale_size_discrete("Offense", labels = c("Robbery","Aggravated Assault","Rape","Murder"), range = c(1.75,6)) + guides(size = guide_legend(override.aes = list(size = 6))) + theme( legend.key.size = grid::unit(1.8,"lines"), legend.title = element_text(size = 16, face = "bold"), legend.text = element_text(size = 14) ) + labs(colour = "Offense", size = "Offense") # a contour plot HoustonMap + stat_density2d(aes(x = lon, y = lat, colour = offense), size = 3, bins = 2, alpha = 3/4, data = violent_crimes) + scale_colour_discrete("Offense", labels = c("Robbery","Aggravated Assault","Rape","Murder")) + theme( legend.text = element_text(size = 15, vjust = .5), legend.title = element_text(size = 15,face="bold"), legend.key.size = grid::unit(1.8,"lines") ) # 2d histogram... HoustonMap + stat_bin_2d(aes(x = lon, y = lat, colour = offense, fill = offense), size = .5, bins = 30, alpha = 2/4, data = violent_crimes) + scale_colour_discrete("Offense", labels = c("Robbery","Aggravated Assault","Rape","Murder"), guide = FALSE) + scale_fill_discrete("Offense", labels = c("Robbery","Aggravated Assault","Rape","Murder")) + theme( legend.text = element_text(size = 15, vjust = .5), legend.title = element_text(size = 15,face="bold"), legend.key.size = grid::unit(1.8,"lines") ) # changing gears (get a color map) houston <- get_map("houston", zoom = 14) HoustonMap <- ggmap(houston, extent = "device", legend = "topleft") # a filled contour plot... HoustonMap + stat_density2d(aes(x = lon, y = lat, fill = ..level.., alpha = ..level..), size = 2, bins = 4, data = violent_crimes, geom = "polygon") + scale_fill_gradient("Violent\nCrime\nDensity") + scale_alpha(range = c(.4, .75), guide = FALSE) + guides(fill = guide_colorbar(barwidth = 1.5, barheight = 10)) # ... with an insert overlay <- stat_density2d(aes(x = lon, y = lat, fill = ..level.., alpha = ..level..), bins = 4, geom = "polygon", data = violent_crimes) attr(houston,"bb") # to help finding (x/y)(min/max) vals below HoustonMap + stat_density2d(aes(x = lon, y = lat, fill = ..level.., alpha = ..level..), bins = 4, geom = "polygon", data = violent_crimes) + scale_fill_gradient("Violent\nCrime\nDensity") + scale_alpha(range = c(.4, .75), guide = FALSE) + guides(fill = guide_colorbar(barwidth = 1.5, barheight = 10)) + inset( grob = ggplotGrob(ggplot() + overlay + scale_fill_gradient("Violent\nCrime\nDensity") + scale_alpha(range = c(.4, .75), guide = FALSE) + theme_inset() ), xmin = -95.35877, xmax = -95.34229, ymin = 29.73754, ymax = 29.75185 ) ## more examples ################################################## # you can layer anything on top of the maps (even meaningless stuff) df <- data.frame( lon = rep(seq(-95.39, -95.35, length.out = 8), each = 20), lat = sapply( rep(seq(29.74, 29.78, length.out = 8), each = 20), function(x) rnorm(1, x, .002) ), class = rep(letters[1:8], each = 20) ) qplot(lon, lat, data = df, geom = "boxplot", fill = class) HoustonMap + geom_boxplot(aes(x = lon, y = lat, fill = class), data = df) ## the base_layer argument - faceting ################################################## df <- data.frame( x = rnorm(1000, -95.36258, .2), y = rnorm(1000, 29.76196, .2) ) # no apparent change because ggmap sets maprange = TRUE with extent = "panel" ggmap(get_map(), base_layer = ggplot(aes(x = x, y = y), data = df)) + geom_point(colour = "red") # ... but there is a difference ggmap(get_map(), base_layer = ggplot(aes(x = x, y = y), data = df), extent = "normal") + geom_point(colour = "red") # maprange can fix it (so can extent = "panel") ggmap(get_map(), maprange = TRUE, extent = "normal", base_layer = ggplot(aes(x = x, y = y), data = df)) + geom_point(colour = "red") # base_layer makes faceting possible df <- data.frame( x = rnorm(10*100, -95.36258, .075), y = rnorm(10*100, 29.76196, .075), year = rep(paste("year",format(1:10)), each = 100) ) ggmap(get_map(), base_layer = ggplot(aes(x = x, y = y), data = df)) + geom_point() + facet_wrap(~ year) ggmap(get_map(), base_layer = ggplot(aes(x = x, y = y), data = df), extent = "device") + geom_point() + facet_wrap(~ year) qmplot(x, y, data = df) qmplot(x, y, data = df, facets = ~ year) ## neat faceting examples ################################################## # simulated example df <- data.frame( x = rnorm(10*100, -95.36258, .05), y = rnorm(10*100, 29.76196, .05), year = rep(paste("year",format(1:10)), each = 100) ) for(k in 0:9){ df$x[1:100 + 100*k] <- df$x[1:100 + 100*k] + sqrt(.05)*cos(2*pi*k/10) df$y[1:100 + 100*k] <- df$y[1:100 + 100*k] + sqrt(.05)*sin(2*pi*k/10) } ggmap(get_map(), base_layer = ggplot(aes(x = x, y = y), data = df)) + stat_density2d(aes(fill = ..level.., alpha = ..level..), bins = 4, geom = "polygon") + scale_fill_gradient2(low = "white", mid = "orange", high = "red", midpoint = 10) + scale_alpha(range = c(.2, .75), guide = FALSE) + facet_wrap(~ year) # crime example by month levels(violent_crimes$month) <- paste( toupper(substr(levels(violent_crimes$month),1,1)), substr(levels(violent_crimes$month),2,20), sep = "" ) houston <- get_map(location = "houston", zoom = 14, source = "osm", color = "bw") HoustonMap <- ggmap(houston, base_layer = ggplot(aes(x = lon, y = lat), data = violent_crimes) ) HoustonMap + stat_density2d(aes(x = lon, y = lat, fill = ..level.., alpha = ..level..), bins = I(5), geom = "polygon", data = violent_crimes) + scale_fill_gradient2("Violent\nCrime\nDensity", low = "white", mid = "orange", high = "red", midpoint = 500) + labs(x = "Longitude", y = "Latitude") + facet_wrap(~ month) + scale_alpha(range = c(.2, .55), guide = FALSE) + ggtitle("Violent Crime Contour Map of Downtown Houston by Month") + guides(fill = guide_colorbar(barwidth = 1.5, barheight = 10)) ## darken argument ################################################## ggmap(get_map()) ggmap(get_map(), darken = .5) ggmap(get_map(), darken = c(.5,"white")) ggmap(get_map(), darken = c(.5,"red")) # silly, but possible ## End(Not run)
ggmap stores options as a named list in R's global options, i.e.
getOption("ggmap")
. It currently stores two such options, one for Google
credentialing and one to suppress private API information in the URLs printed
to the screen when web queries are placed. For both of those, see
register_google()
.
set_ggmap_option(...) has_ggmap_options() has_ggmap_option(option) ggmap_credentials()
set_ggmap_option(...) has_ggmap_options() has_ggmap_option(option) ggmap_credentials()
... |
a named listing of options to set |
option |
a specific option to query, e.g. |
David Kahle [email protected]
getOption("ggmap") has_ggmap_options() has_ggmap_option("display_api_key")
getOption("ggmap") has_ggmap_options() has_ggmap_option("display_api_key")
As provider services change over time, ggmap has to make corresponding changes. Since its inception, a few services have stopped offering their previous functionality, and in some cases this has required us to remove those functions from the package entirely.
The following are defunct ggmap functions:
get_cloudemademap
get_navermap
get_openstreetmap
get_stamenmap
ggmap plots the raster object produced by get_map()
.
ggmapplot( ggmap, fullpage = FALSE, base_layer, maprange = FALSE, expand = FALSE, ... )
ggmapplot( ggmap, fullpage = FALSE, base_layer, maprange = FALSE, expand = FALSE, ... )
ggmap |
an object of class ggmap (from function |
fullpage |
logical; should the map take up the entire viewport? |
base_layer |
a ggplot(aes(...), ...) call; see examples |
maprange |
logical for use with base_layer; should the map define the x and y limits? |
expand |
should the map extend to the edge of the panel? used with base_layer and maprange=TRUE. |
... |
... |
a ggplot object
David Kahle [email protected]
## Not run: this is a deprecated function, use ggmap. ## End(Not run)
## Not run: this is a deprecated function, use ggmap. ## End(Not run)
Highly unofficial ggplot2 image
Garrett Grolemund [email protected]
This is identical to ggplot2::annotation_custom for use with ggmap
inset(grob, xmin = -Inf, xmax = Inf, ymin = -Inf, ymax = Inf)
inset(grob, xmin = -Inf, xmax = Inf, ymin = -Inf, ymax = Inf)
grob |
grob to display |
xmin , xmax
|
x location (in data coordinates) giving horizontal location of raster |
ymin , ymax
|
y location (in data coordinates) giving vertical location of raster |
Most useful for adding tables, inset plots, and other grid-based decorations
annotation_custom()
expects the grob to fill the entire viewport
defined by xmin, xmax, ymin, ymax. Grobs with a different (absolute) size
will be center-justified in that region. Inf values can be used to fill the
full plot panel
This is a special version of ggplot2::annotation_raster for use with ggmap.
(It simply removes the requirement for cartesian coordinates.) The only
difference between inset_raster()
and inset_ggmap()
is their arguments.
inset_ggmap()
is simply a wrapper of inset_raster()
with xmin
, ...
,
ymax
arguments equal to the map's bounding box.
inset_raster(raster, xmin, xmax, ymin, ymax, interpolate = TRUE) inset_ggmap(ggmap)
inset_raster(raster, xmin, xmax, ymin, ymax, interpolate = TRUE) inset_ggmap(ggmap)
raster |
raster object to display |
xmin , xmax
|
x location (in data coordinates) giving horizontal location of raster |
ymin , ymax
|
y location (in data coordinates) giving vertical location of raster |
interpolate |
interpolate the raster? (i.e. antialiasing) |
ggmap |
a ggmap object, see |
## Not run: # save cran check time bbox <- c(left = -97.1268, bottom = 31.536245, right = -97.099334, top = 31.559652) terrain_map <- get_stadiamap(bbox, zoom = 14, maptype = "stamen_terrain_background", color = "bw") ggmap(terrain_map) lines_map <- get_stadiamap(bbox, zoom = 14, maptype = "stamen_toner_lines") ggmap(lines_map) ggmap(terrain_map) + inset_ggmap(lines_map) ## End(Not run)
## Not run: # save cran check time bbox <- c(left = -97.1268, bottom = 31.536245, right = -97.099334, top = 31.559652) terrain_map <- get_stadiamap(bbox, zoom = 14, maptype = "stamen_terrain_background", color = "bw") ggmap(terrain_map) lines_map <- get_stadiamap(bbox, zoom = 14, maptype = "stamen_toner_lines") ggmap(lines_map) ggmap(terrain_map) + inset_ggmap(lines_map) ## End(Not run)
Convert a leg-structured route to a route-structured route
legs2route(legsdf)
legs2route(legsdf)
legsdf |
a legs-structured route, see |
## Not run: requires Google API key, see ?register_google (legs_df <- route("houston","galveston")) legs2route(legs_df) (legs_df <- route( "marrs mclean science, baylor university", "220 south 3rd street, waco, tx 76701", # ninfa"s alternatives = TRUE)) legs2route(legs_df) from <- "houston, texas" to <- "waco, texas" legs_df <- route(from, to) qmap("college station, texas", zoom = 8) + geom_segment( aes(x = start_lon, y = start_lat, xend = end_lon, yend = end_lat), colour = "red", size = 1.5, data = legs_df ) # notice boxy ends qmap("college station, texas", zoom = 8) + geom_leg( aes(x = start_lon, y = start_lat, xend = end_lon, yend = end_lat), colour = "red", size = 1.5, data = legs_df ) # notice overshooting ends route_df <- legs2route(legs_df) qmap("college station, texas", zoom = 8) + geom_path( aes(x = lon, y = lat), colour = "red", size = 1.5, data = route_df, lineend = "round" ) ## End(Not run)
## Not run: requires Google API key, see ?register_google (legs_df <- route("houston","galveston")) legs2route(legs_df) (legs_df <- route( "marrs mclean science, baylor university", "220 south 3rd street, waco, tx 76701", # ninfa"s alternatives = TRUE)) legs2route(legs_df) from <- "houston, texas" to <- "waco, texas" legs_df <- route(from, to) qmap("college station, texas", zoom = 8) + geom_segment( aes(x = start_lon, y = start_lat, xend = end_lon, yend = end_lat), colour = "red", size = 1.5, data = legs_df ) # notice boxy ends qmap("college station, texas", zoom = 8) + geom_leg( aes(x = start_lon, y = start_lat, xend = end_lon, yend = end_lat), colour = "red", size = 1.5, data = legs_df ) # notice overshooting ends route_df <- legs2route(legs_df) qmap("college station, texas", zoom = 8) + geom_path( aes(x = lon, y = lat), colour = "red", size = 1.5, data = route_df, lineend = "round" ) ## End(Not run)
Convert a lon/lat coordinate to a tile coordinate for a given zoom. Decimal tile coordinates (x, y) are reported.
LonLat2XY(lon_deg, lat_deg, zoom, xpix = 256, ypix = 256)
LonLat2XY(lon_deg, lat_deg, zoom, xpix = 256, ypix = 256)
lon_deg |
longitude in degrees |
lat_deg |
latitude in degrees |
zoom |
zoom |
xpix |
width of tile in pixels |
ypix |
length of tile in pixels |
a data frame with columns X, Y, x, y
David Kahle [email protected], based on
RgoogleMaps::LatLon2XY()
by Markus Loecher of Sense Networks
[email protected]
https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
## Not run: gc <- geocode('baylor university') LonLat2XY(gc$lon, gc$lat, 10) ## End(Not run)
## Not run: gc <- geocode('baylor university') LonLat2XY(gc$lon, gc$lat, 10) ## End(Not run)
Compute a bounding box for a given longitude / latitude collection.
make_bbox(lon, lat, data, f = 0.05)
make_bbox(lon, lat, data, f = 0.05)
lon |
longitude |
lat |
latitude |
data |
(optional) a data frame containing lon and lat as variables |
f |
number specifying the fraction by which the range should be extended. if length 2 vector, applies to longitude and then latitude. |
make_bbox(lon, lat, data = crime) make_bbox(lon, lat, data = crime, f = .20) make_bbox(lon, lat, data = crime, f = c(.20, .05)) (lon <- sample(crime$lon, 10)) (lat <- sample(crime$lat, 10)) make_bbox(lon, lat) make_bbox(lon, lat, f = .10) # bigger box
make_bbox(lon, lat, data = crime) make_bbox(lon, lat, data = crime, f = .20) make_bbox(lon, lat, data = crime, f = c(.20, .05)) (lon <- sample(crime$lon, 10)) (lat <- sample(crime$lat, 10)) make_bbox(lon, lat) make_bbox(lon, lat, f = .10) # bigger box
Compute map distances using Google's Distance Matrix API. Note: To use
Google's Distance Matrix API, you must first enable the API in the Google
Cloud Platform Console. See register_google()
.
mapdist( from, to, mode = c("driving", "walking", "bicycling", "transit"), output = c("simple", "all"), urlonly = FALSE, override_limit = FALSE, ext = "com", inject = "", ... ) distQueryCheck()
mapdist( from, to, mode = c("driving", "walking", "bicycling", "transit"), output = c("simple", "all"), urlonly = FALSE, override_limit = FALSE, ext = "com", inject = "", ... ) distQueryCheck()
from |
name of origin addresses in a data frame (vector accepted), or a data frame with from and to columns |
to |
name of destination addresses in a data frame (vector accepted) |
mode |
driving, bicycling, walking, or transit |
output |
amount of output |
urlonly |
return only the url? |
override_limit |
override the current query count (.google_distance_query_times) |
ext |
top level domain domain extension (e.g. "com", "co.nz") |
inject |
character string to add to the url |
... |
... |
if parameters from and to are specified as geographic coordinates, they are reverse geocoded with revgeocode. note that the google maps api limits to 2500 element queries a day.
a data frame (output="simple") or all of the geocoded information (output="all")
David Kahle [email protected]
https://developers.google.com/maps/documentation/distance-matrix/, https://developers.google.com/maps/documentation/distance-matrix/overview/
## Not run: requires Google API key, see ?register_google ## basic usage ######################################## mapdist("waco, texas", "houston, texas") # many from, single to from <- c("houston, texas", "dallas") to <- "waco, texas" mapdist(from, to) mapdist(from, to, mode = "bicycling") mapdist(from, to, mode = "walking") # tibble of from's, vector of to's # (with a data frame, remember stringsAsFactors = FALSE) tibble( "from" = c("houston", "houston", "dallas"), "to" = c("waco", "san antonio", "houston") ) %>% mapdist() # distance matrix library("tidyverse") c("Hamburg, Germany", "Stockholm, Sweden", "Copenhagen, Denmark") %>% list(., .) %>% set_names(c("from", "to")) %>% cross_df() %>% mapdist() -> distances distances distances %>% select(from, to, km) %>% spread(from, km) ## other examples ######################################## # many from, single to with addresses from <- c( "1600 Amphitheatre Parkway, Mountain View, CA", "3111 World Drive Walt Disney World, Orlando, FL" ) to <- "1600 Pennsylvania Avenue, Washington DC" mapdist(from, to) # mode = "transit from <- "st lukes hospital houston texas" to <- "houston zoo, houston texas" mapdist(from, to, mode = "transit") ## geographic coordinates are accepted as well ######################################## (wh <- as.numeric(geocode("the white house, dc"))) (lm <- as.numeric(geocode("lincoln memorial washington dc"))) mapdist(wh, lm, mode = "walking") ## End(Not run)
## Not run: requires Google API key, see ?register_google ## basic usage ######################################## mapdist("waco, texas", "houston, texas") # many from, single to from <- c("houston, texas", "dallas") to <- "waco, texas" mapdist(from, to) mapdist(from, to, mode = "bicycling") mapdist(from, to, mode = "walking") # tibble of from's, vector of to's # (with a data frame, remember stringsAsFactors = FALSE) tibble( "from" = c("houston", "houston", "dallas"), "to" = c("waco", "san antonio", "houston") ) %>% mapdist() # distance matrix library("tidyverse") c("Hamburg, Germany", "Stockholm, Sweden", "Copenhagen, Denmark") %>% list(., .) %>% set_names(c("from", "to")) %>% cross_df() %>% mapdist() -> distances distances distances %>% select(from, to, km) %>% spread(from, km) ## other examples ######################################## # many from, single to with addresses from <- c( "1600 Amphitheatre Parkway, Mountain View, CA", "3111 World Drive Walt Disney World, Orlando, FL" ) to <- "1600 Pennsylvania Avenue, Washington DC" mapdist(from, to) # mode = "transit from <- "st lukes hospital houston texas" to <- "houston zoo, houston texas" mapdist(from, to, mode = "transit") ## geographic coordinates are accepted as well ######################################## (wh <- as.numeric(geocode("the white house, dc"))) (lm <- as.numeric(geocode("lincoln memorial washington dc"))) mapdist(wh, lm, mode = "walking") ## End(Not run)
Look up OpenStreetMap scale for a given zoom level.
OSM_scale_lookup(zoom = 10)
OSM_scale_lookup(zoom = 10)
zoom |
google zoom |
The calculation of an appropriate OSM scale value for a given zoom level is a complicated task. For details, see https://wiki.openstreetmap.org/wiki/FAQ
scale
David Kahle [email protected]
OSM_scale_lookup(zoom = 3) OSM_scale_lookup(zoom = 10) ## Not run: # these can take a long time or are prone to crashing # if the osm server load is too high # these maps are were the ones used to tailor fit the scale # the zooms were fixed ggmap(get_map(zoom = 3, source = 'osm', scale = 47500000), extent = "device") ggmap(get_map(zoom = 4, source = 'osm', scale = 32500000), extent = "device") ggmap(get_map(zoom = 5, source = 'osm', scale = 15000000), extent = "device") ggmap(get_map(zoom = 6, source = 'osm', scale = 10000000), extent = "device") ggmap(get_map(zoom = 7, source = 'osm', scale = 5000000), extent = "device") ggmap(get_map(zoom = 8, source = 'osm', scale = 2800000), extent = "device") ggmap(get_map(zoom = 9, source = 'osm', scale = 1200000), extent = "device") ggmap(get_map(zoom = 10, source = 'osm', scale = 575000), extent = "device") ggmap(get_map(zoom = 11, source = 'osm', scale = 220000), extent = "device") ggmap(get_map(zoom = 12, source = 'osm', scale = 110000), extent = "device") ggmap(get_map(zoom = 13, source = 'osm', scale = 70000), extent = "device") ggmap(get_map(zoom = 14, source = 'osm', scale = 31000), extent = "device") ggmap(get_map(zoom = 15, source = 'osm', scale = 15000), extent = "device") ggmap(get_map(zoom = 16, source = 'osm', scale = 7500), extent = "device") ggmap(get_map(zoom = 17, source = 'osm', scale = 4000), extent = "device") ggmap(get_map(zoom = 18, source = 'osm', scale = 2500), extent = "device") ggmap(get_map(zoom = 19, source = 'osm', scale = 1750), extent = "device") ggmap(get_map(zoom = 20, source = 'osm', scale = 1000), extent = "device") # the USA lonR <- c(1.01,.99)*c(-124.73,-66.95) latR <- c(.99,1.01)*c(24.52, 49.38) qmap(lonR = lonR, latR = latR, source = 'osm', scale = 325E5) ## End(Not run)
OSM_scale_lookup(zoom = 3) OSM_scale_lookup(zoom = 10) ## Not run: # these can take a long time or are prone to crashing # if the osm server load is too high # these maps are were the ones used to tailor fit the scale # the zooms were fixed ggmap(get_map(zoom = 3, source = 'osm', scale = 47500000), extent = "device") ggmap(get_map(zoom = 4, source = 'osm', scale = 32500000), extent = "device") ggmap(get_map(zoom = 5, source = 'osm', scale = 15000000), extent = "device") ggmap(get_map(zoom = 6, source = 'osm', scale = 10000000), extent = "device") ggmap(get_map(zoom = 7, source = 'osm', scale = 5000000), extent = "device") ggmap(get_map(zoom = 8, source = 'osm', scale = 2800000), extent = "device") ggmap(get_map(zoom = 9, source = 'osm', scale = 1200000), extent = "device") ggmap(get_map(zoom = 10, source = 'osm', scale = 575000), extent = "device") ggmap(get_map(zoom = 11, source = 'osm', scale = 220000), extent = "device") ggmap(get_map(zoom = 12, source = 'osm', scale = 110000), extent = "device") ggmap(get_map(zoom = 13, source = 'osm', scale = 70000), extent = "device") ggmap(get_map(zoom = 14, source = 'osm', scale = 31000), extent = "device") ggmap(get_map(zoom = 15, source = 'osm', scale = 15000), extent = "device") ggmap(get_map(zoom = 16, source = 'osm', scale = 7500), extent = "device") ggmap(get_map(zoom = 17, source = 'osm', scale = 4000), extent = "device") ggmap(get_map(zoom = 18, source = 'osm', scale = 2500), extent = "device") ggmap(get_map(zoom = 19, source = 'osm', scale = 1750), extent = "device") ggmap(get_map(zoom = 20, source = 'osm', scale = 1000), extent = "device") # the USA lonR <- c(1.01,.99)*c(-124.73,-66.95) latR <- c(.99,1.01)*c(24.52, 49.38) qmap(lonR = lonR, latR = latR, source = 'osm', scale = 325E5) ## End(Not run)
Print a console description of a map
## S3 method for class 'ggmap' print(x, ...)
## S3 method for class 'ggmap' print(x, ...)
x |
an object of class elicit |
... |
additional parameters |
Invisibly returns x
.
## Not run: requires a Stadia Maps API key. see ?register_stadiamaps get_stadiamap(zoom = 9) ## End(Not run)
## Not run: requires a Stadia Maps API key. see ?register_stadiamaps get_stadiamap(zoom = 9) ## End(Not run)
qmap is a wrapper for ggmap()
and get_map()
.
qmap(location = "houston", ...)
qmap(location = "houston", ...)
location |
character; location of interest |
... |
a ggplot object
David Kahle [email protected]
## Not run: some requires Google API key; heavy network/time load location <- "marrs mclean science, waco, texas" qmap(location) qmap(location, zoom = 14) qmap(location, zoom = 14, source = "osm") qmap(location, zoom = 14, source = "osm", scale = 20000) qmap(location, zoom = 14, maptype = "satellite") qmap(location, zoom = 14, maptype = "hybrid") qmap(location, zoom = 14, maptype = "stamen_toner", source = "stadia") qmap(location, zoom = 14, maptype = "stamen_watercolor", source = "stadia") qmap(location, zoom = 14, maptype = "stamen_terrain_background", source = "stadia") qmap(location, zoom = 14, maptype = "stamen_toner_lite", source = "stadia") where <- "the white house, washington dc" wh <- geocode(where) qmap(where, maprange = TRUE, zoom = 15, base_layer = ggplot(aes(x=lon, y=lat), data = wh)) + geom_point() ## End(Not run)
## Not run: some requires Google API key; heavy network/time load location <- "marrs mclean science, waco, texas" qmap(location) qmap(location, zoom = 14) qmap(location, zoom = 14, source = "osm") qmap(location, zoom = 14, source = "osm", scale = 20000) qmap(location, zoom = 14, maptype = "satellite") qmap(location, zoom = 14, maptype = "hybrid") qmap(location, zoom = 14, maptype = "stamen_toner", source = "stadia") qmap(location, zoom = 14, maptype = "stamen_watercolor", source = "stadia") qmap(location, zoom = 14, maptype = "stamen_terrain_background", source = "stadia") qmap(location, zoom = 14, maptype = "stamen_toner_lite", source = "stadia") where <- "the white house, washington dc" wh <- geocode(where) qmap(where, maprange = TRUE, zoom = 15, base_layer = ggplot(aes(x=lon, y=lat), data = wh)) + geom_point() ## End(Not run)
qmplot()
is the ggmap equivalent to the ggplot2 function qplot and allows
for the quick plotting of maps with data/models/etc.
qmplot( x, y, ..., data, zoom, source = "stadia", maptype = "stamen_toner_lite", extent = "device", legend = "right", padding = 0.02, force = FALSE, darken = c(0, "black"), mapcolor = "color", facets = NULL, margins = FALSE, geom = "auto", stat = list(NULL), position = list(NULL), xlim = c(NA, NA), ylim = c(NA, NA), main = NULL, f = 0.05, xlab = "Longitude", ylab = "Latitude" )
qmplot( x, y, ..., data, zoom, source = "stadia", maptype = "stamen_toner_lite", extent = "device", legend = "right", padding = 0.02, force = FALSE, darken = c(0, "black"), mapcolor = "color", facets = NULL, margins = FALSE, geom = "auto", stat = list(NULL), position = list(NULL), xlim = c(NA, NA), ylim = c(NA, NA), main = NULL, f = 0.05, xlab = "Longitude", ylab = "Latitude" )
x |
longitude values |
y |
latitude values |
... |
other aesthetics passed for each layer |
data |
data frame to use (optional). If not specified, will create one, extracting vectors from the current environment. |
zoom |
map zoom, see |
source |
map source, see |
maptype |
map type, see |
extent |
how much of the plot should the map take up? "normal", "panel", or "device" (default) |
legend |
"left", "right" (default), "bottom", "top", "bottomleft", "bottomright", "topleft", "topright", "none" (used with extent = "device") |
padding |
distance from legend to corner of the plot (used with extent = "device") |
force |
force new map (don't use archived version) |
darken |
vector of the form c(number, color), where number is in (0,1) and color is a character string indicating the color of the darken. 0 indicates no darkening, 1 indicates a black-out. |
mapcolor |
color ("color") or black-and-white ("bw") |
facets |
faceting formula to use. Picks |
margins |
whether or not margins will be displayed |
geom |
character vector specifying geom to use. defaults to "point" |
stat |
character vector specifying statistics to use |
position |
character vector giving position adjustment to use |
xlim |
limits for x axis |
ylim |
limits for y axis |
main |
character vector or expression for plot title |
f |
number specifying the fraction by which the range should be extended |
xlab |
character vector or expression for x axis label |
ylab |
character vector or expression for y axis label |
## Not run: # these are skipped to conserve R check time qmplot(lon, lat, data = crime) # only violent crimes violent_crimes <- subset(crime, offense != "auto theft" & offense != "theft" & offense != "burglary" ) # rank violent crimes violent_crimes$offense <- factor( violent_crimes$offense, levels = c("robbery", "aggravated assault", "rape", "murder") ) # restrict to downtown violent_crimes <- subset(violent_crimes, -95.39681 <= lon & lon <= -95.34188 & 29.73631 <= lat & lat <= 29.78400 ) theme_set(theme_bw()) qmplot(lon, lat, data = violent_crimes, colour = offense, size = I(3.5), alpha = I(.6), legend = "topleft") qmplot(lon, lat, data = violent_crimes, geom = c("point","density2d")) qmplot(lon, lat, data = violent_crimes) + facet_wrap(~ offense) qmplot(lon, lat, data = violent_crimes, extent = "panel") + facet_wrap(~ offense) qmplot(lon, lat, data = violent_crimes, extent = "panel", colour = offense, darken = .4) + facet_wrap(~ month) qmplot(long, lat, xend = long + delta_long, color = I("red"), yend = lat + delta_lat, data = seals, geom = "segment", zoom = 5) qmplot(long, lat, xend = long + delta_long, maptype = "stamen_watercolor", yend = lat + delta_lat, data = seals, geom = "segment", zoom = 6) qmplot(long, lat, xend = long + delta_long, maptype = "stamen_terrain", yend = lat + delta_lat, data = seals, geom = "segment", zoom = 6) qmplot(lon, lat, data = wind, size = I(.5), alpha = I(.5)) + ggtitle("NOAA Wind Report Sites") # thin down data set... s <- seq(1, 227, 8) thinwind <- subset(wind, lon %in% unique(wind$lon)[s] & lat %in% unique(wind$lat)[s] ) # for some reason adding arrows to the following plot bugs theme_set(theme_bw(18)) qmplot(lon, lat, data = thinwind, geom = "tile", fill = spd, alpha = spd, legend = "bottomleft") + geom_leg(aes(xend = lon + delta_lon, yend = lat + delta_lat)) + scale_fill_gradient2("Wind Speed\nand\nDirection", low = "green", mid = scales::muted("green"), high = "red") + scale_alpha("Wind Speed\nand\nDirection", range = c(.1, .75)) + guides(fill = guide_legend(), alpha = guide_legend()) ## kriging ############################################################ # the below examples show kriging based on undeclared packages # to better comply with CRAN's standards, we remove it from # executing, but leave the code as a kind of case-study # they also require the rgdal library library(lattice) library(sp) library(rgdal) # load in and format the meuse dataset (see bivand, pebesma, and gomez-rubio) data(meuse) coordinates(meuse) <- c("x", "y") proj4string(meuse) <- CRS("+init=epsg:28992") meuse <- spTransform(meuse, CRS("+proj=longlat +datum=WGS84")) # plot plot(meuse) m <- data.frame(slot(meuse, "coords"), slot(meuse, "data")) names(m)[1:2] <- c("lon", "lat") qmplot(lon, lat, data = m) qmplot(lon, lat, data = m, zoom = 14) qmplot(lon, lat, data = m, size = zinc, zoom = 14, source = "google", maptype = "satellite", alpha = I(.75), color = I("green"), legend = "topleft", darken = .2 ) + scale_size("Zinc (ppm)") # load in the meuse.grid dataset (looking toward kriging) library(gstat) data(meuse.grid) coordinates(meuse.grid) <- c("x", "y") proj4string(meuse.grid) <- CRS("+init=epsg:28992") meuse.grid <- spTransform(meuse.grid, CRS("+proj=longlat +datum=WGS84")) # plot it plot(meuse.grid) mg <- data.frame(slot(meuse.grid, "coords"), slot(meuse.grid, "data")) names(mg)[1:2] <- c("lon", "lat") qmplot(lon, lat, data = mg, shape = I(15), zoom = 14, legend = "topleft") + geom_point(aes(size = zinc), data = m, color = "green") + scale_size("Zinc (ppm)") # interpolate at unobserved locations (i.e. at meuse.grid points) # pre-define scale for consistency scale <- scale_color_gradient("Predicted\nZinc (ppm)", low = "green", high = "red", lim = c(100, 1850) ) # inverse distance weighting idw <- idw(log(zinc) ~ 1, meuse, meuse.grid, idp = 2.5) mg$idw <- exp(slot(idw, "data")$var1.pred) qmplot(lon, lat, data = mg, shape = I(15), color = idw, zoom = 14, legend = "topleft", alpha = I(.75), darken = .4 ) + scale # linear regression lin <- krige(log(zinc) ~ 1, meuse, meuse.grid, degree = 1) mg$lin <- exp(slot(lin, "data")$var1.pred) qmplot(lon, lat, data = mg, shape = I(15), color = lin, zoom = 14, legend = "topleft", alpha = I(.75), darken = .4 ) + scale # trend surface analysis tsa <- krige(log(zinc) ~ 1, meuse, meuse.grid, degree = 2) mg$tsa <- exp(slot(tsa, "data")$var1.pred) qmplot(lon, lat, data = mg, shape = I(15), color = tsa, zoom = 14, legend = "topleft", alpha = I(.75), darken = .4 ) + scale # ordinary kriging vgram <- variogram(log(zinc) ~ 1, meuse) # plot(vgram) vgramFit <- fit.variogram(vgram, vgm(1, "Exp", .2, .1)) ordKrige <- krige(log(zinc) ~ 1, meuse, meuse.grid, vgramFit) mg$ordKrige <- exp(slot(ordKrige, "data")$var1.pred) qmplot(lon, lat, data = mg, shape = I(15), color = ordKrige, zoom = 14, legend = "topleft", alpha = I(.75), darken = .4 ) + scale # universal kriging vgram <- variogram(log(zinc) ~ 1, meuse) # plot(vgram) vgramFit <- fit.variogram(vgram, vgm(1, "Exp", .2, .1)) univKrige <- krige(log(zinc) ~ sqrt(dist), meuse, meuse.grid, vgramFit) mg$univKrige <- exp(slot(univKrige, "data")$var1.pred) qmplot(lon, lat, data = mg, shape = I(15), color = univKrige, zoom = 14, legend = "topleft", alpha = I(.75), darken = .4 ) + scale # adding observed data layer qmplot(lon, lat, data = mg, shape = I(15), color = univKrige, zoom = 14, legend = "topleft", alpha = I(.75), darken = .4 ) + geom_point( aes(x = lon, y = lat, size = zinc), data = m, shape = 1, color = "black" ) + scale + scale_size("Observed\nLog Zinc") ## End(Not run) # end dontrun
## Not run: # these are skipped to conserve R check time qmplot(lon, lat, data = crime) # only violent crimes violent_crimes <- subset(crime, offense != "auto theft" & offense != "theft" & offense != "burglary" ) # rank violent crimes violent_crimes$offense <- factor( violent_crimes$offense, levels = c("robbery", "aggravated assault", "rape", "murder") ) # restrict to downtown violent_crimes <- subset(violent_crimes, -95.39681 <= lon & lon <= -95.34188 & 29.73631 <= lat & lat <= 29.78400 ) theme_set(theme_bw()) qmplot(lon, lat, data = violent_crimes, colour = offense, size = I(3.5), alpha = I(.6), legend = "topleft") qmplot(lon, lat, data = violent_crimes, geom = c("point","density2d")) qmplot(lon, lat, data = violent_crimes) + facet_wrap(~ offense) qmplot(lon, lat, data = violent_crimes, extent = "panel") + facet_wrap(~ offense) qmplot(lon, lat, data = violent_crimes, extent = "panel", colour = offense, darken = .4) + facet_wrap(~ month) qmplot(long, lat, xend = long + delta_long, color = I("red"), yend = lat + delta_lat, data = seals, geom = "segment", zoom = 5) qmplot(long, lat, xend = long + delta_long, maptype = "stamen_watercolor", yend = lat + delta_lat, data = seals, geom = "segment", zoom = 6) qmplot(long, lat, xend = long + delta_long, maptype = "stamen_terrain", yend = lat + delta_lat, data = seals, geom = "segment", zoom = 6) qmplot(lon, lat, data = wind, size = I(.5), alpha = I(.5)) + ggtitle("NOAA Wind Report Sites") # thin down data set... s <- seq(1, 227, 8) thinwind <- subset(wind, lon %in% unique(wind$lon)[s] & lat %in% unique(wind$lat)[s] ) # for some reason adding arrows to the following plot bugs theme_set(theme_bw(18)) qmplot(lon, lat, data = thinwind, geom = "tile", fill = spd, alpha = spd, legend = "bottomleft") + geom_leg(aes(xend = lon + delta_lon, yend = lat + delta_lat)) + scale_fill_gradient2("Wind Speed\nand\nDirection", low = "green", mid = scales::muted("green"), high = "red") + scale_alpha("Wind Speed\nand\nDirection", range = c(.1, .75)) + guides(fill = guide_legend(), alpha = guide_legend()) ## kriging ############################################################ # the below examples show kriging based on undeclared packages # to better comply with CRAN's standards, we remove it from # executing, but leave the code as a kind of case-study # they also require the rgdal library library(lattice) library(sp) library(rgdal) # load in and format the meuse dataset (see bivand, pebesma, and gomez-rubio) data(meuse) coordinates(meuse) <- c("x", "y") proj4string(meuse) <- CRS("+init=epsg:28992") meuse <- spTransform(meuse, CRS("+proj=longlat +datum=WGS84")) # plot plot(meuse) m <- data.frame(slot(meuse, "coords"), slot(meuse, "data")) names(m)[1:2] <- c("lon", "lat") qmplot(lon, lat, data = m) qmplot(lon, lat, data = m, zoom = 14) qmplot(lon, lat, data = m, size = zinc, zoom = 14, source = "google", maptype = "satellite", alpha = I(.75), color = I("green"), legend = "topleft", darken = .2 ) + scale_size("Zinc (ppm)") # load in the meuse.grid dataset (looking toward kriging) library(gstat) data(meuse.grid) coordinates(meuse.grid) <- c("x", "y") proj4string(meuse.grid) <- CRS("+init=epsg:28992") meuse.grid <- spTransform(meuse.grid, CRS("+proj=longlat +datum=WGS84")) # plot it plot(meuse.grid) mg <- data.frame(slot(meuse.grid, "coords"), slot(meuse.grid, "data")) names(mg)[1:2] <- c("lon", "lat") qmplot(lon, lat, data = mg, shape = I(15), zoom = 14, legend = "topleft") + geom_point(aes(size = zinc), data = m, color = "green") + scale_size("Zinc (ppm)") # interpolate at unobserved locations (i.e. at meuse.grid points) # pre-define scale for consistency scale <- scale_color_gradient("Predicted\nZinc (ppm)", low = "green", high = "red", lim = c(100, 1850) ) # inverse distance weighting idw <- idw(log(zinc) ~ 1, meuse, meuse.grid, idp = 2.5) mg$idw <- exp(slot(idw, "data")$var1.pred) qmplot(lon, lat, data = mg, shape = I(15), color = idw, zoom = 14, legend = "topleft", alpha = I(.75), darken = .4 ) + scale # linear regression lin <- krige(log(zinc) ~ 1, meuse, meuse.grid, degree = 1) mg$lin <- exp(slot(lin, "data")$var1.pred) qmplot(lon, lat, data = mg, shape = I(15), color = lin, zoom = 14, legend = "topleft", alpha = I(.75), darken = .4 ) + scale # trend surface analysis tsa <- krige(log(zinc) ~ 1, meuse, meuse.grid, degree = 2) mg$tsa <- exp(slot(tsa, "data")$var1.pred) qmplot(lon, lat, data = mg, shape = I(15), color = tsa, zoom = 14, legend = "topleft", alpha = I(.75), darken = .4 ) + scale # ordinary kriging vgram <- variogram(log(zinc) ~ 1, meuse) # plot(vgram) vgramFit <- fit.variogram(vgram, vgm(1, "Exp", .2, .1)) ordKrige <- krige(log(zinc) ~ 1, meuse, meuse.grid, vgramFit) mg$ordKrige <- exp(slot(ordKrige, "data")$var1.pred) qmplot(lon, lat, data = mg, shape = I(15), color = ordKrige, zoom = 14, legend = "topleft", alpha = I(.75), darken = .4 ) + scale # universal kriging vgram <- variogram(log(zinc) ~ 1, meuse) # plot(vgram) vgramFit <- fit.variogram(vgram, vgm(1, "Exp", .2, .1)) univKrige <- krige(log(zinc) ~ sqrt(dist), meuse, meuse.grid, vgramFit) mg$univKrige <- exp(slot(univKrige, "data")$var1.pred) qmplot(lon, lat, data = mg, shape = I(15), color = univKrige, zoom = 14, legend = "topleft", alpha = I(.75), darken = .4 ) + scale # adding observed data layer qmplot(lon, lat, data = mg, shape = I(15), color = univKrige, zoom = 14, legend = "topleft", alpha = I(.75), darken = .4 ) + geom_point( aes(x = lon, y = lat, size = zinc), data = m, shape = 1, color = "black" ) + scale + scale_size("Observed\nLog Zinc") ## End(Not run) # end dontrun
This page contains documentation for tools related to enabling Google services in R. See the Details section of this file for background information.
showing_key() ggmap_show_api_key() ggmap_hide_api_key() scrub_key(string, with = "xxx") register_google( key, account_type, client, signature, second_limit, day_limit, write = FALSE ) ## S3 method for class 'google_credentials' print(x, ...) google_key() has_google_key() has_google_account() google_account() google_client() has_google_client() google_signature() has_google_signature() google_second_limit() google_day_limit()
showing_key() ggmap_show_api_key() ggmap_hide_api_key() scrub_key(string, with = "xxx") register_google( key, account_type, client, signature, second_limit, day_limit, write = FALSE ) ## S3 method for class 'google_credentials' print(x, ...) google_key() has_google_key() has_google_account() google_account() google_client() has_google_client() google_signature() has_google_signature() google_second_limit() google_day_limit()
string |
a url string to be scrubbed. currently key, signature, and client keywords are scrubbed from the url and replace with the with argument |
with |
a string to replace |
key |
an api key |
account_type |
|
client |
client code |
signature |
signature code |
second_limit |
query limit per second (default 50) |
day_limit |
query limit per day (default 2500 for standard accounts, 100000 for premium accounts) |
write |
if TRUE, stores the secrets provided in the .Renviron file |
x |
a google credentials class object |
... |
a dumped formal argument to the generic print method |
As of mid-2018, the Google Maps Platform requires a registered API key. While this alleviates previous burdens (e.g. query limits), it creates some challenges as well. The most immediate challenge for most R users is that ggmap functions that use Google's services no longer function out of the box, since the user has to setup an account with Google, enable the relevant APIs, and then tell R about the user's setup.
To obtain an API key and enable services, go to https://mapsplatform.google.com/. This documentation shows you how to input the requisite information (e.g. your API key) into R, and it also shows you a few tools that can help you work with the credentialing.
To tell ggmap about your API key, use register_google()
, e.g.
register_google(key = "mQkzTpiaLYjPqXQBotesgif3EfGL2dbrNVOrogg")
(that's a
fake key). This will set your API key for the current session, but if you
restart R, you'll need to do it again. You can set it permanently by setting
write = TRUE
, see the examples. If you set it permanently it will be stored
in your .Renviron file, and that will be accessed by ggmap persistently
across sessions.
Users should be aware that the API key, a string of jarbled characters/numbers/symbols, is a PRIVATE key - it uniquely identifies and authenticates you to Google's services. If anyone gets your API key, they can use it to masquerade as you to Google and potentially use services that you have enabled. Since Google requires a valid credit card to use its online cloud services, this also means that anyone who obtains your key can potentially make charges to your card in the form of Google services. So be sure to not share your API key. To mitigate against users inadvertently sharing their keys, by default ggmap never displays a user's key in messages displayed to the console.
Users should also be aware that ggmap has no mechanism with which to safeguard the private key once registered with R. That is to say, once you register your API key, any function R will have access to it. As a consequence, ggmap will not know if another function, potentially from a compromised package, accesses the key and uploads it to a third party. For this reason, when using ggmap we recommend a heightened sense of security and self-awareness: only use trusted packages, do not save API keys in script files, routinely cycle keys (regenerate new keys and retire old ones), etc. Google offers features to help in securing your API key, including things like limiting queries using that key to a particular IP address, as well as guidance on security best practices. See https://cloud.google.com/docs/authentication/api-keys#securing_an_api_key for details.
David Kahle [email protected]
https://mapsplatform.google.com/, https://developers.google.com/maps/documentation/maps-static/get-api-key/, https://developers.google.com/maps/documentation/maps-static/usage-and-billing/
# this sets your google map for this session # register_google(key = "[your key]") # this sets your google map permanently # register_google(key = "[your key]", write = TRUE) has_google_key() google_key() has_google_client() has_google_signature() geocode("waco, texas", urlonly = TRUE) ggmap_show_api_key() geocode("waco, texas", urlonly = TRUE) ggmap_hide_api_key() geocode("waco, texas", urlonly = TRUE) scrub_key("key=d_5iD") scrub_key("key=d_5iD", "[your \\1]") scrub_key("signature=d_5iD") scrub_key("client=a_5sS&signature=d_5iD")
# this sets your google map for this session # register_google(key = "[your key]") # this sets your google map permanently # register_google(key = "[your key]", write = TRUE) has_google_key() google_key() has_google_client() has_google_signature() geocode("waco, texas", urlonly = TRUE) ggmap_show_api_key() geocode("waco, texas", urlonly = TRUE) ggmap_hide_api_key() geocode("waco, texas", urlonly = TRUE) scrub_key("key=d_5iD") scrub_key("key=d_5iD", "[your \\1]") scrub_key("signature=d_5iD") scrub_key("client=a_5sS&signature=d_5iD")
This page contains documentation for tools related to enabling Stadia Maps services in R. See the Details section of this file for background information.
register_stadiamaps(key, write = FALSE) stadiamaps_key() has_stadiamaps_key()
register_stadiamaps(key, write = FALSE) stadiamaps_key() has_stadiamaps_key()
key |
an api key |
write |
if TRUE, stores the secrets provided in the .Renviron file |
To obtain an API key and enable services, go to https://client.stadiamaps.com/signup/. It is completely free for non-commercial and evaluation use (a license is for commercial use; see https://stadiamaps.com/pricing for pricing), and no credit card is required to sign up.
To tell ggmap about your API key, use register_stadiamaps()
, e.g.
register_stadiamaps(key = "YOUR-API-KEY")
(that's a
fake key). This will set your API key for the current session, but if you
restart R, you'll need to do it again. You can set it permanently by setting
write = TRUE
, see the examples. If you set it permanently it will be stored
in your .Renviron file, and that will be accessed by ggmap persistently
across sessions.
Users should be aware that the API key, is a PRIVATE key - it uniquely identifies and authenticates you to Stadia Maps' services. If anyone gets your API key, they can use it to masquerade as you to Stadia Maps and potentially use services that you have enabled. While Stadia Maps requires you to opt in to additional usage-based billing, this also means that anyone who obtains your key can potentially incur charges on your behalf or steal the quota that you have already purchased. So be sure to not share your API key. To mitigate against users inadvertently sharing their keys, by default ggmap never displays a user's key in messages displayed to the console.
Users should also be aware that ggmap has no mechanism with which to safeguard the private key once registered with R. That is to say, once you register your API key, any function R will have access to it. As a consequence, ggmap will not know if another function, potentially from a compromised package, accesses the key and uploads it to a third party. For this reason, when using ggmap we recommend a heightened sense of security and self-awareness: only use trusted packages, do not save API keys in script files, routinely cycle keys (regenerate new keys and retire old ones), etc.
https://docs.stadiamaps.com/authentication/, https://stadiamaps.com/pricing, https://client.stadiamaps.com/signup/
# this sets your Stadia Maps API key for this session # register_stadiamaps(key = "YOUR-API-KEY") # this sets your Stadia Maps API key permanently # register_stadiamaps(key = "YOUR-API-KEY", write = TRUE) has_stadiamaps_key() stadiamaps_key()
# this sets your Stadia Maps API key for this session # register_stadiamaps(key = "YOUR-API-KEY") # this sets your Stadia Maps API key permanently # register_stadiamaps(key = "YOUR-API-KEY", write = TRUE) has_stadiamaps_key() stadiamaps_key()
Reverse geocodes (looks up the address of) a longitude/latitude location
using the Google Geocoding API. Note: To use Google's Geocoding API, you must
first enable the API in the Google Cloud Platform Console. See
register_google()
.
revgeocode( location, output = c("address", "all"), force = FALSE, urlonly = FALSE, override_limit = FALSE, ext = "com", inject = "", ... )
revgeocode( location, output = c("address", "all"), force = FALSE, urlonly = FALSE, override_limit = FALSE, ext = "com", inject = "", ... )
location |
a location in longitude/latitude format |
output |
"address" or "all" |
force |
force online query, even if cached (previously downloaded) |
urlonly |
return only the url? |
override_limit |
override the current query rate |
ext |
top level domain extension (e.g. "com", "co.nz") |
inject |
character string to add to the url |
... |
... |
a character(1) address or a list (the parsed json output from Google)
David Kahle [email protected]
https://developers.google.com/maps/documentation/geocoding/
## Not run: requires Google API key, see ?register_google ## basic usage ######################################## ( gc <- as.numeric(geocode("the white house")) ) revgeocode(gc) str(revgeocode(gc, output = "all"), 3) ## End(Not run)
## Not run: requires Google API key, see ?register_google ## basic usage ######################################## ( gc <- as.numeric(geocode("the white house")) ) revgeocode(gc) str(revgeocode(gc, output = "all"), 3) ## End(Not run)
Route two locations: determine a sequence of steps (legs) between two
locations using the Google Directions API. Note: To use Google's Directions
API, you must first enable the API in the Google Cloud Platform Console. See
register_google()
.
route( from, to, mode = c("driving", "walking", "bicycling", "transit"), structure = c("legs", "route"), output = c("simple", "all"), alternatives = FALSE, units = "metric", urlonly = FALSE, override_limit = FALSE, ext = "com", inject = "", ... ) routeQueryCheck()
route( from, to, mode = c("driving", "walking", "bicycling", "transit"), structure = c("legs", "route"), output = c("simple", "all"), alternatives = FALSE, units = "metric", urlonly = FALSE, override_limit = FALSE, ext = "com", inject = "", ... ) routeQueryCheck()
from |
vector of origin addresses |
to |
vector of destination addresses |
mode |
driving, bicycling, walking, or transit |
structure |
structure of output, "legs" or "route", see examples |
output |
amount of output ("simple" or "all") |
alternatives |
should more than one route be provided? |
units |
"metric" |
urlonly |
return only the url? |
override_limit |
override the current query count |
ext |
domain extension (e.g. "com", "co.nz") |
inject |
character string to add to the url |
... |
... |
a data frame (output="simple") or all of the geocoded information (output="all")
David Kahle [email protected]
https://developers.google.com/maps/documentation/directions/,
trek()
, legs2route()
, geom_leg()
, register_google()
## Not run: requires Google API key, see ?register_google ## basic usage ######################################## from <- "houston, texas" to <- "waco, texas" route(from, to, structure = "legs") route(from, to, structure = "route") route(from, to, alternatives = TRUE) ## comparison to trek ######################################## (route_df <- route(from, to, structure = "route")) (trek_df <- trek(from, to, structure = "route")) qmap("college station, texas", zoom = 8) + geom_path( aes(x = lon, y = lat), colour = "red", size = 1.5, alpha = .5, data = route_df, lineend = "round" ) + geom_path( aes(x = lon, y = lat), colour = "blue", size = 1.5, alpha = .5, data = trek_df, lineend = "round" ) qmap("college station, texas", zoom = 6) + geom_path( aes(x = lon, y = lat), colour = "red", size = 1.5, data = route_df, lineend = "round" ) ## End(Not run)
## Not run: requires Google API key, see ?register_google ## basic usage ######################################## from <- "houston, texas" to <- "waco, texas" route(from, to, structure = "legs") route(from, to, structure = "route") route(from, to, alternatives = TRUE) ## comparison to trek ######################################## (route_df <- route(from, to, structure = "route")) (trek_df <- trek(from, to, structure = "route")) qmap("college station, texas", zoom = 8) + geom_path( aes(x = lon, y = lat), colour = "red", size = 1.5, alpha = .5, data = route_df, lineend = "round" ) + geom_path( aes(x = lon, y = lat), colour = "blue", size = 1.5, alpha = .5, data = trek_df, lineend = "round" ) qmap("college station, texas", zoom = 6) + geom_path( aes(x = lon, y = lat), colour = "red", size = 1.5, data = route_df, lineend = "round" ) ## End(Not run)
theme_inset is a ggplot2 theme geared towards making inset plots.
theme_inset(base_size = 12)
theme_inset(base_size = 12)
base_size |
base size, not used. |
a ggplot2 theme (i.e., a list of class options).
David Kahle [email protected]
library(ggplot2) ## Not run: n <- 50 df <- expand.grid(x = 1:n,y = 1:n)[sample(n^2,.5*n^2),] qplot(x, y, data = df, geom = 'tile') qplot(x, y, data = df, geom = 'tile') + theme_nothing() qplot(1:10, 1:10) + annotation_custom( grob = ggplotGrob(qplot(1:10,1:10)), 8, Inf, -Inf, 2 ) qplot(1:10, 1:10) + annotation_custom( grob = ggplotGrob(qplot(1:10,1:10) + theme_nothing()), 8, Inf, -Inf, 2 ) qplot(1:10, 1:10) + annotation_custom( grob = ggplotGrob(qplot(1:10,1:10) + theme_inset()), 8, Inf, -Inf, 2 ) ## End(Not run)
library(ggplot2) ## Not run: n <- 50 df <- expand.grid(x = 1:n,y = 1:n)[sample(n^2,.5*n^2),] qplot(x, y, data = df, geom = 'tile') qplot(x, y, data = df, geom = 'tile') + theme_nothing() qplot(1:10, 1:10) + annotation_custom( grob = ggplotGrob(qplot(1:10,1:10)), 8, Inf, -Inf, 2 ) qplot(1:10, 1:10) + annotation_custom( grob = ggplotGrob(qplot(1:10,1:10) + theme_nothing()), 8, Inf, -Inf, 2 ) qplot(1:10, 1:10) + annotation_custom( grob = ggplotGrob(qplot(1:10,1:10) + theme_inset()), 8, Inf, -Inf, 2 ) ## End(Not run)
theme_nothing simply strips all thematic element in ggplot2.
theme_nothing(base_size = 12, legend = FALSE)
theme_nothing(base_size = 12, legend = FALSE)
base_size |
base size, not used. |
legend |
should the legend be included? |
a ggplot2 theme (i.e., a list of class options).
David Kahle [email protected]
# no legend example n <- 50 df <- expand.grid(x = 1:n,y = 1:n)[sample(n^2,.5*n^2),] p <- ggplot(df, aes(x, y)) + geom_raster() p p + theme_nothing() p + theme_nothing(legend = TRUE) # no difference p + scale_x_continuous(expand = c(0,0)) + scale_y_continuous(expand = c(0,0)) + theme_nothing() # legend example df$class <- factor(sample(0:1, .5*n^2, replace = TRUE)) p <- ggplot(df, aes(x, y)) + geom_raster(aes(fill = class)) p p + theme_nothing() p + theme_nothing(legend = TRUE) p <- p + scale_x_continuous(expand = c(0,0)) + scale_y_continuous(expand = c(0,0)) p p + theme_nothing() p + theme_nothing(legend = TRUE)
# no legend example n <- 50 df <- expand.grid(x = 1:n,y = 1:n)[sample(n^2,.5*n^2),] p <- ggplot(df, aes(x, y)) + geom_raster() p p + theme_nothing() p + theme_nothing(legend = TRUE) # no difference p + scale_x_continuous(expand = c(0,0)) + scale_y_continuous(expand = c(0,0)) + theme_nothing() # legend example df$class <- factor(sample(0:1, .5*n^2, replace = TRUE)) p <- ggplot(df, aes(x, y)) + geom_raster(aes(fill = class)) p p + theme_nothing() p + theme_nothing(legend = TRUE) p <- p + scale_x_continuous(expand = c(0,0)) + scale_y_continuous(expand = c(0,0)) p p + theme_nothing() p + theme_nothing(legend = TRUE)
Sequence treks (latitude-longitude sequences following ordinary paths, e.g.
roads) between two locations using the Google Directions API. Note: To use
Google's Directions API, you must first enable the API in the Google Cloud
Platform Console. See register_google()
.
trek( from, to, mode = c("driving", "walking", "bicycling", "transit"), output = c("simple", "all"), alternatives = FALSE, units = "metric", urlonly = FALSE, override_limit = FALSE, ext = "com", inject = "", ... )
trek( from, to, mode = c("driving", "walking", "bicycling", "transit"), output = c("simple", "all"), alternatives = FALSE, units = "metric", urlonly = FALSE, override_limit = FALSE, ext = "com", inject = "", ... )
from |
name of origin addresses in a data frame |
to |
name of destination addresses in a data frame |
mode |
driving, bicycling, walking, or transit |
output |
amount of output ("simple" or "all") |
alternatives |
should more than one route be provided? |
units |
"metric" |
urlonly |
return only the url? |
override_limit |
override the current query count |
ext |
domain extension (e.g. "com", "co.nz") |
inject |
character string to add to the url |
... |
... |
a tibble
David Kahle [email protected] with the key decoding algorithm due to Stack Overflow user akhmed
https://developers.google.com/maps/documentation/directions/,
https://stackoverflow.com/questions/30270011/ggmap-route-finding-doesnt-stay-on-roads/,
route()
, routeQueryCheck()
, register_google()
## Not run: requires Google API key, see ?register_google ## basic usage ######################################## from <- "houston, texas" to <- "waco, texas" (route_df <- route(from, to, structure = "route")) (trek_df <- trek(from, to, structure = "route")) qmap("college station, texas", zoom = 8) + geom_path( aes(x = lon, y = lat), colour = "red", size = 1.5, alpha = .5, data = route_df, lineend = "round" ) + geom_path( aes(x = lon, y = lat), colour = "blue", size = 1.5, alpha = .5, data = trek_df, lineend = "round" ) from <- "rice university houston texas" to <- "1001 Bissonnet St, Houston, TX 77005" trek_df <- trek(from, to) qmplot(lon, lat, data = trek_df, geom = "path", maptype = "terrain", color = I("red"), size = I(2), alpha = I(.5) ) trek_df <- trek(from, to, mode = "walking") qmplot(lon, lat, data = trek_df, geom = "path", maptype = "terrain", color = I("red"), size = I(2), alpha = I(.5) ) trek_df <- trek(from, to, mode = "transit") qmplot(lon, lat, data = trek_df, geom = "path", maptype = "terrain", color = I("red"), size = I(2), alpha = I(.5) ) ## neat faceting example ######################################## from <- "houston, texas"; to <- "waco, texas" trek_df <- trek(from, to, alternatives = TRUE) qmplot(lon, lat, data = trek_df, geom = "path", color = route, size = I(2), maptype = "terrain", alpha = I(.5) ) qmplot(lon, lat, data = trek_df, geom = "path", color = route, size = I(2), maptype = "terrain", zoom = 8 ) + facet_grid(. ~ route) ## End(Not run)
## Not run: requires Google API key, see ?register_google ## basic usage ######################################## from <- "houston, texas" to <- "waco, texas" (route_df <- route(from, to, structure = "route")) (trek_df <- trek(from, to, structure = "route")) qmap("college station, texas", zoom = 8) + geom_path( aes(x = lon, y = lat), colour = "red", size = 1.5, alpha = .5, data = route_df, lineend = "round" ) + geom_path( aes(x = lon, y = lat), colour = "blue", size = 1.5, alpha = .5, data = trek_df, lineend = "round" ) from <- "rice university houston texas" to <- "1001 Bissonnet St, Houston, TX 77005" trek_df <- trek(from, to) qmplot(lon, lat, data = trek_df, geom = "path", maptype = "terrain", color = I("red"), size = I(2), alpha = I(.5) ) trek_df <- trek(from, to, mode = "walking") qmplot(lon, lat, data = trek_df, geom = "path", maptype = "terrain", color = I("red"), size = I(2), alpha = I(.5) ) trek_df <- trek(from, to, mode = "transit") qmplot(lon, lat, data = trek_df, geom = "path", maptype = "terrain", color = I("red"), size = I(2), alpha = I(.5) ) ## neat faceting example ######################################## from <- "houston, texas"; to <- "waco, texas" trek_df <- trek(from, to, alternatives = TRUE) qmplot(lon, lat, data = trek_df, geom = "path", color = route, size = I(2), maptype = "terrain", alpha = I(.5) ) qmplot(lon, lat, data = trek_df, geom = "path", color = route, size = I(2), maptype = "terrain", zoom = 8 ) + facet_grid(. ~ route) ## End(Not run)
Wind data from Hurricane Ike
Powell, M. D., S. H. Houston, L. R. Amat, and N Morisseau-Leroy, 1998: The HRD real-time hurricane wind analysis system. J. Wind Engineer. and Indust. Aerodyn. 77&78, 53-64
Atlantic Oceanographic and Meteorological Laboratory (AOML), a division of the National Oceanic and Atmospheric Administration (NOAA)
https://www.aoml.noaa.gov/hrd/Storm_pages/ike2008/wind.html
Convert a tile coordinate to a lon/lat coordinate for a given zoom. Decimal tile coordinates are accepted.
XY2LonLat(X, Y, zoom, x = 0, y = 0, xpix = 255, ypix = 255)
XY2LonLat(X, Y, zoom, x = 0, y = 0, xpix = 255, ypix = 255)
X |
horizontal map-tile coordinate (0 is map-left) |
Y |
vertical map-tile coordinate (0 is map-top) |
zoom |
zoom |
x |
within tile x (0 is tile-left) |
y |
within tile y (0 it tile-top) |
xpix |
width of tile in pixels |
ypix |
length of tile in pixels |
a data frame with columns lon and lat (in degrees)
David Kahle [email protected], based on
RgoogleMaps::XY2LatLon()
by Markus Loecher of Sense Networks
[email protected]
https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
## Not run: XY2LonLat(480, 845, zoom = 11) XY2LonLat(0, 0, zoom = 1) XY2LonLat(0, 0, 255, 255, zoom = 1) XY2LonLat(0, 0, 255, 255, zoom = 1) ## End(Not run)
## Not run: XY2LonLat(480, 845, zoom = 11) XY2LonLat(0, 0, zoom = 1) XY2LonLat(0, 0, 255, 255, zoom = 1) XY2LonLat(0, 0, 255, 255, zoom = 1) ## End(Not run)
Zip code data for the Greater Houston Metropolitan Area from the 2000 census
U.S. Census Bureau, Geography Division, Cartographic Products Management Branch
Downloaded from http://www.census.gov/geo/www/cob/z52000.html (now defunct).